Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-nucleus chromatin accessibility and gene expression co-profiling by ISSAAC-seq

Abstract

Multimodal profiling of different molecular layers from the same single cell enables more comprehensive characterization of cellular heterogeneity compared with conventional single-modality approaches. A key example is co-detection of chromatin accessibility and gene expression that offers the opportunity to investigate cell type-resolved gene regulatory mechanisms. Here we describe a sensitive and robust protocol for in situ sequencing hetero RNA–DNA-hybrid after assay for transposase-accessible chromatin using sequencing (ISSAAC-seq) for the concurrent measurement of chromatin accessibility and gene expression from the same single nucleus. The method begins with dual Tn5 tagging of open chromatin regions and the RNA–cDNA hybrid produced by reverse transcription that take place in bulk nuclei. Then, various single-nucleus isolation strategies, including plate and droplet barcoding-based approaches, can be used based on the experimental purpose of the user. The protocol is highly modular with a flexible throughput ranging from several hundreds to tens of thousands of nuclei. The generated data are of high quality in both modalities. The entire workflow can be finished within 1 or 2 days, and the procedures work on multiple different single-nucleus isolation and barcoding platforms.

Key points

  • This protocol takes advantage of the hyperactive Tn5 transposase to tag open chromatin and RNA in bulk nuclei in situ. These steps are followed by single nucleus separation and barcoding on the users’ platform of choice and high-throughput sequencing.

  • Co-profiling chromatin accessibility and RNA enhances the characterization of cell states in complex tissues. The approach has been validated in multiple tissues and cell types and can be performed on a variety of single-cell isolation platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic view of the workflow.
Fig. 2: Sequences of the ISSAAC-seq library and the sequencing configurations.
Fig. 3: Examples of nuclei at different steps.
Fig. 4: Some examples of library size distributions from different experiments.
Fig. 5: A flow chart of the computational pipeline for the data preprocessing.
Fig. 6: Comparisons of the effect of different RT temperatures on the ISSAAC-seq data quality.
Fig. 7: Venn diagrams show the overlap of called cell barcodes between ATAC and RNA.
Fig. 8: Genome browser tracks of aggregated ISSAAC-seq data from indicated platforms.
Fig. 9: UMAP plots of ISSAAC-seq of mouse cortex using the 10x scATAC platform.
Fig. 10: UMAP plots of ISSAAC-seq of mouse cortex using the Bio-Rad dscATAC platform.

Similar content being viewed by others

Data availability

The data generated using the plate and 10x scATAC workflows are available for download via ArrayExpress under the accession no. E-MTAB-11264. Data generated using the Bio-Rad workflow and the improved RT condition can be found under the accession no. E-MTAB-15131. The data used to generate Figs. 7–9 are from ref. 37.

Code availability

The code used to process the data and the instructions to run the code are available in the GitHub repository at https://github.com/dbrg77/ISSAAC-seqV2.

References

  1. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article  PubMed  CAS  Google Scholar 

  3. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen, C. et al. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science 356, 189–194 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat. Methods 14, 302–308 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528, 142–146 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  PubMed  CAS  Google Scholar 

  20. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nagano, T. et al. Single cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tan, L., Xing, D., Chang, C.-H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mulqueen, R. M. et al. High-content single-cell combinatorial indexing. Nat. Biotechnol. 39, 1574–1580 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat. Biotechnol. 40, 64–73 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  PubMed  CAS  Google Scholar 

  33. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).

    Article  PubMed  CAS  Google Scholar 

  34. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  PubMed  CAS  Google Scholar 

  35. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature 584, 244–251 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xu, W. et al. ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells. Nat. Methods 19, 1243–1249 (2022).

    Article  PubMed  CAS  Google Scholar 

  38. Di, L. et al. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc. Natl Acad. Sci. USA 117, 2886–2893 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lu, B. et al. Transposase assisted tagmentation of RNA/DNA hybrid duplexes. eLife 9, e54919 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Goryshin, I. Y. & Reznikoff, W. S. Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Amini, S. et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet. 46, 1343–1349 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894.e7 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. De Rop, F. V. et al. Systematic benchmarking of single-cell ATAC-sequencing protocols. Nat. Biotechnol. 42, 916–926 (2024).

    Article  PubMed  CAS  Google Scholar 

  46. Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    Article  PubMed  CAS  Google Scholar 

  48. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lobato-Moreno, S. et al. Single-cell ultra-high-throughput multiplexed chromatin and RNA profiling reveals gene regulatory dynamics. Nat. Methods 22, 1213–1225 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wu, B. et al. Overloading and unpacking (OAK)—droplet-based combinatorial indexing for ultra-high throughput single-cell multiomic profiling. Nat. Commun. 15, 9146 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li, Y. et al. UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing. Nat. Methods 22, 1199–1212 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Channathodiyil, P. & Houseley, J. Glyoxal fixation facilitates transcriptome analysis after antigen staining and cell sorting by flow cytometry. PLoS ONE 16, e0240769 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bageritz, J. et al. Glyoxal as an alternative fixative for single-cell RNA sequencing. G3 13, jkad160 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liscovitch-Brauer, N. et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nat. Biotechnol. 39, 1270–1277 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, eaam8999 (2018).

    Article  Google Scholar 

  56. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. De Rop, F. V. et al. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads. eLife 11, e73971 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, eaau0730 (2018).

    Article  Google Scholar 

  60. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Liu, L. et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat. Commun. 10, 470 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Xing, Q. R. et al. Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. Genome Res. 30, 1027–1039 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Plongthongkum, N., Diep, D., Chen, S., Lake, B. B. & Zhang, K. Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2). Nat. Protoc. 16, 4992–5029 (2021).

    Article  PubMed  CAS  Google Scholar 

  66. Cheng, H. et al. Smart3-ATAC: a highly sensitive method for joint accessibility and full-length transcriptome analysis in single cells. Preprint at bioRxiv https://doi.org/10.1101/2021.12.02.470912 (2021).

  67. Yan, R. et al. Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. Cell Stem Cell 28, 1641–1656.e7 (2021).

    Article  PubMed  CAS  Google Scholar 

  68. Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, Y. et al. Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos. Nat. Commun. 12, 1247 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chai, H. et al. Tri-omic mapping revealed concerted dynamics of 3D epigenome and transcriptome in brain cells. Nat. Methods 22, 994–1007 (2025).

    Article  PubMed  CAS  Google Scholar 

  73. Penter, L. et al. FACS single cell index sorting is highly reliable and determines immune phenotypes of clonally expanded T cells. Eur. J. Immunol. 48, 1248–1250 (2018).

    Article  PubMed  CAS  Google Scholar 

  74. Baron, C. S. et al. Cell type purification by single-cell transcriptome-trained sorting. Cell 179, 527–542.e19 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yan, R. E. et al. Pooled CRISPR screens with joint single-nucleus chromatin accessibility and transcriptome profiling. Nat. Biotechnol. 43, 1628–1634 (2024).

    Article  PubMed  Google Scholar 

  76. Metzner, E., Southard, K. M. & Norman, T. M. Multiome perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Cell Syst. 16, 101161 (2025).

    Article  PubMed  CAS  Google Scholar 

  77. Shevade, K. et al. Simultaneous capture of single cell RNA-seq, ATAC-seq, and CRISPR perturbation enables multiomic screens to identify gene regulatory relationships. Cell Rep. Methods 5, 101222 (2025).

    Article  PubMed  CAS  Google Scholar 

  78. Pensold, D. & Zimmer-Bensch, G. in Single-Cell Sequencing and Methylation (eds Yu, B. et al.) 1255, 7–27 (Springer, 2020).

  79. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Richter, K. N. et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J. 37, 139–159 (2018).

    Article  PubMed  CAS  Google Scholar 

  81. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hennig, B. P. et al. Large-scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3 8, 79–89 (2018).

    Article  PubMed  CAS  Google Scholar 

  83. Soroczynski, J. et al. OpenTn5: open-source resource for robust and scalable Tn5 transposase purification and characterization (2024).

  84. Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442755 (2021).

  85. Zhang, H. et al. Fast alignment and preprocessing of chromatin profiles with Chromap. Nat. Commun. 12, 6566 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article  PubMed  Google Scholar 

  88. Zhang, K., Zemke, N. R., Armand, E. J. & Ren, B. A fast, scalable and versatile tool for analysis of single-cell omics data. Nat. Methods 21, 217–227 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  95. Xu, W. et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility. Nat. Protoc. 16, 4084–4107 (2021).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Chen lab for discussion. The computational work was supported by the Center for Computational Science and Engineering at Southern University of Science and Technology. The cell and nucleus icons from Fig. 1 were created by Servier (https://smart.servier.com/) and are licensed under CC-BY 3.0 Unported (https://creativecommons.org/licenses/by/3.0/). This work was supported by the National Natural Science Foundation of China (grant no. 32322019 to X.C.; grant nos. 32200509 and 32470674 to W.X.), the Guangdong Program (grant no. 2021QN02Y165 to X.C.), Science and Technology Projects in Guangzhou (grant no. 2024A04J5074 to W.X.) and Shenzhen Medical Research Fund (grant no. C2301007 to X.C.).

Author information

Authors and Affiliations

Authors

Contributions

W.X. and X.C. conceived the project and designed the protocol; W.X. performed the experiment with help from Y.H., L.M.L., Q.Z. and S.M.C.; Y.Z., P.M.S. and X.C. performed the bioinformatics data analysis. X.C. and W.X. supervised the project. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Wei Xu or Xi Chen.

Ethics declarations

Competing interests

P.M.S., L.M.L., Q.Z. and S.M.C. are employees of Bio-Rad Laboratories. The rest of the authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Stephania Contreras Castillo, Rong Fan and Leif Ludwig for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Xu, W. et al. Nat. Methods 19, 1243–1249 (2022): https://doi.org/10.1038/s41592-022-01601-4

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Table 1: oligo sequences used in the protocol. Supplementary Table 2: detailed cost comparison between ISSAAC-seq and 10x Multiome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Hu, Y., Zhang, Y. et al. Single-nucleus chromatin accessibility and gene expression co-profiling by ISSAAC-seq. Nat Protoc (2026). https://doi.org/10.1038/s41596-025-01304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01304-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research