Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Conjugation of hydrophobic drugs to motile pRNA 4WJ nanoparticles for spontaneous tumor targeting and undetectable toxicity

Abstract

Chemotherapeutics are widely used in cancer treatments, but their toxicity, bioavailability and solubility present challenges. RNA nanotechnology has emerged as a promising modality for targeted delivery of chemotherapeutics. Structurally, RNA is thermostable, while conformationally it is dynamic and flexible. RNA’s unique deformability and motility lead to rapid spontaneous tumor accumulation and glomerular excretion, thus fast body clearance, while its anionic charge and favorable small size prevent accumulation in vital organs, resulting in undetectable toxicity. We developed branched 4-way junction (4WJ) nanoparticles that were stable with a melting temperature >80 °C, even when conjugated with 24 drugs per 4WJ. Each 4WJ RNA component strand can conjugate six molecules of hydrophobic chemotherapeutic drugs, such as camptothecin, paclitaxel and SN-38. Thus, each 4WJ carries a total of 24 drug molecules spaced to prevent aggregation. RNA conjugation improved paclitaxel water solubility 32,000-fold. This protocol describes the construction of 4WJ RNA drug complexes for cancer therapy. Specific procedures include the modification of chemical drugs, conjugation of multiple prodrug molecules to each synthesized RNA component strand, assembly of RNA nanoparticles and their purification and characterization. Prodrugs are conjugated to RNA nanoparticles via efficient click chemistry, creating an ester linker that is cleaved by esterases in tumor tissues or cells, allowing the prodrugs to return back to their original structures and chemistry upon delivery and release, minimizing toxicity. Inclusion of tumor targeting ligands demonstrated specific delivery of high payload chemotherapeutics to tumors, controlled release of chemical drugs and strong tumor inhibition.

Key points

  • RNA strands containing modified nucleotides are produced by using solid-phase synthesis for conjugation with multiple chemotherapeutic prodrugs, including camptothecin, paclitaxel and SN38, by copper-chelated click chemistry, where copper is easily removed during purification due to its much smaller size compared to RNA before assembling the 4WJ RNA nanoparticles, which can be loaded with up to 24 drug molecules per nanoparticle.

  • The RNA nanoparticles can be designed to contain a tumor-targeting ligand, resulting in specific uptake by the target cell type, while the drug payload is released via cleavage by esterases in the tumor microenvironment to ensure site-specific delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview schematic of the procedure to produce a branched RNA nanoparticle conjugated with small-molecule chemical drugs.
Fig. 2: Workflow of the procedure for generating chemical drug-conjugated RNA nanoparticles.
Fig. 3: Overview of an ultra-stable 4WJ RNA nanoparticle for chemical drug conjugation.
Fig. 4: Synthesis scheme of chemical drug modification into prodrugs via Steglich esterification.
Fig. 5: Synthesis scheme of drug conjugation to the RNA oligo using copper-chelated click chemistry.
Fig. 6: Combinational delivery of SN38 and gemcitabine chemotherapies achieved by 4WJ RNA nanoparticles.
Fig. 7: Characterization of prodrugs after Steglich esterification.
Fig. 8: Characterization of RNA oligos conjugated with chemotherapeutics.
Fig. 9: Assembly and characterization of 4WJ RNA nanoparticles conjugated with chemotherapeutics.
Fig. 10: Efficacy of drug-conjugated 4WJ nanoparticles for treatment of cancer.

Similar content being viewed by others

Data availability

Data that support this Protocol can be found in their original publications34,41,42,43,64 and are included as Supplementary Data.

References

  1. Singla, A. K., Garg, A. & Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 235, 179–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, S. Q., Wiradharma, N., Gao, S. J., Tong, Y. W. & Yang, Y. Y. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 28, 1423–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. De Jong, W. H. & Borm, P. J. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008).

    Article  Google Scholar 

  4. Kouchakzadeh, H., Safavi, M. S. & Shojaosadati, S. A. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv. Protein Chem. Struct. Biol. 98, 121–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. McNeil, S. E. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 264–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 14, 282–295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hafeez, U., Parakh, S., Gan, H. K. & Scott, A. M. Antibody-drug conjugates for cancer therapy. Molecules 25, 4764 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tarantino, P. et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 72, 165–182 (2022).

    PubMed  Google Scholar 

  9. Dean, A. Q., Luo, S., Twomey, J. D. & Zhang, B. Targeting cancer with antibody-drug conjugates: promises and challenges. MAbs 13, 1951427 (2021).

    Article  PubMed  Google Scholar 

  10. Maiti, R. et al. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch. Pharm. Res. 46, 361–388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo, P. X., Erickson, S. & Anderson, D. A small viral RNA is required for in vitro packaging of bacteriophage ϕ29 DNA. Science 236, 690–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Guo, P., Zhang, C., Chen, C., Garver, K. & Trottier, M. Inter-RNA interaction of phage ϕ29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell 2, 149–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shu, Y. et al. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev. 66, 74–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. 383, 1920–1931 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Hoy, S. M. Patisiran: first global approval. Drugs 78, 1625–1631 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Binzel, D. W. et al. Thermostability, tunability, and tenacity of RNA as rubbery anionic polymeric materials in nanotechnology and nanomedicine-specific cancer targeting with undetectable toxicity. Chem. Rev. 121, 7398–7467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghimire, C. et al. RNA nanoparticles as rubber for compelling vessel extravasation to enhance tumor targeting and for fast renal excretion to reduce toxicity. ACS Nano 14, 13180–13191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, X., Bhullar, A. S., Binzel, D. W. & Guo, P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv. Drug Deliv. Rev. 186, 114316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, P. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol. 5, 1964–1982 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ni, X., Castanares, M., Mukherjee, A. & Lupold, S. E. Nucleic acid aptamers: clinical applications and promising new horizons. Curr. Med. Chem. 18, 4206–4214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thiviyanathan, V. & Gorenstein, D. G. Aptamers and the next generation of diagnostic reagents. Proteom. Clin. Appl. 6, 563–573 (2012).

    Article  CAS  Google Scholar 

  25. Kang, K. N. & Lee, Y. S. RNA aptamers: a review of recent trends and applications. Adv. Biochem. Eng. Biotechnol. 131, 153–169 (2013).

    CAS  PubMed  Google Scholar 

  26. Xu, C. et al. Conversion of chemical drugs into targeting ligands on RNA nanoparticles and assessing payload stoichiometry for optimal biodistribution in cancer treatment. RNA Nanomed. 1, 109–123 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Binzel, D. W. et al. RNA nanoparticles harboring radioisotopes or other imaging molecules for spontaneous tumor targeting for early cancer diagnosis. RNA Nanomed. 2, 10.59566/isrnn.2025.0201d (2025).

    PubMed Central  Google Scholar 

  28. Shu, Y., Cinier, M., Shu, D. & Guo, P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54, 204–214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Binzel, D. et al. Specific delivery of miRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol. Ther. 24, 1267–1277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, Y. et al. Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-γ-linolenic acid for colon cancer suppression. Redox Biol. 21, 101085–101093 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, L., Li, Z., Binzel, D. W., Guo, P. & Williams, T. M. Targeting oncogenic KRAS in non-small cell lung cancer with EGFR aptamer-conjugated multifunctional RNA nanoparticles. Mol. Ther. Nucleic Acids 33, 559–571 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shu, D. et al. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9, 9731–9740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin, H. et al. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther. 27, 1252–1261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, H. et al. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J. Control. Release 330, 173–184 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bian, H. et al. CD133-guided RNA nanoparticle delivery of FTO siRNA impairs leukemia resistance to tyrosine kinase inhibitor therapy. RNA Nanomed. 2, 70–88 (2025).

    Article  Google Scholar 

  36. Beasock, D. et al. The reduction of traumatic spinal cord secondary injury by anti-RhoA siRNA functionalized nucleic acid nanoparticles (NANPs). RNA Nanomed. 1, 79–90 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jasinski, D. L., Yin, H., Li, Z. & Guo, P. Hydrophobic effect from conjugated chemicals or drugs on in vivo biodistribution of RNA nanoparticles. Hum. Gene Ther. 29, 77–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jasinski, D. L., Li, H. & Guo, P. The effect of size and shape of RNA nanoparticles on biodistribution. Mol. Ther. 26, 784–792 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, H. & Guo, P. Radiolabeled RNA nanoparticles for highly specific targeting and efficient tumor accumulation with favorable in vivo biodistribution. Mol. Pharm. 18, 2924–2934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grabow, W. W. & Jaeger, L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871–1880 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Guo, S. et al. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun. 11, 972–982 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piao, X., Yin, H., Guo, S., Wang, H. & Guo, P. RNA nanotechnology to solubilize ydrophobic antitumor drug for targeted delivery. Adv. Sci. 6, 1900951 (2019).

    Article  CAS  Google Scholar 

  43. Li, X. et al. RNA four-way junction (4WJ) for spontaneous cancer-targeting, effective tumor-regression, metastasis suppression, fast renal excretion and undetectable toxicity. Biomaterials 305, 122432 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jin, K. et al. In vitro and in vivo evaluation of the pathology and safety aspects of three- and four-way junction RNA nanoparticles. Mol. Pharm. 21, 718–728 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Che, Y. et al. Targeting EGFR self-assembling RNA nanoparticles co-delivering paclitaxel and miRNA21 inhibitors for the treatment of head and neck tumors RNA. Nanomed 2, 33–51 (2025).

    Google Scholar 

  46. Jasinski, D., Haque, F., Binzel, D. W. & Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano 11, 1142–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Afonin, K. A. et al. Multifunctional RNA nanoparticles. Nano Lett. 14, 5662–5671 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J. & Franco, E. RNA nanotechnology in synthetic biology. Curr. Opin. Biotechnol. 63, 135–141 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Piao, X., Wang, H., Binzel, D. W. & Guo, P. Assessment and comparison of Thermal stability of phosphorothioate-DNA, DNA, RNA, 2′-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 24, 67–76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, L. C. et al. Nicotinic acetylcholine receptor subtype alpha-9 mediates triple-negative breast cancers based on a spontaneous pulmonary metastasis mouse model. Front. Cell. Neurosci. 11, 336 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khisamutdinov, E. F. et al. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 42, 9996–10004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo, S. et al. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol. Ther. Nucleic Acids 9, 399–408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rackley, L. et al. RNA fibers as optimized nanoscaffolds for siRNA coordination and reduced immunological recognition. Adv. Funct. Mater. 28, 1805959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chandler, M. & Afonin, K. A. Smart-responsive nucleic acid nanoparticles (NANPs) with the potential to modulate immune behavior. Nanomaterials 9, 611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo, S., Tschammer, N., Mohammed, S. & Guo, P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum. Gene Ther. 16, 1097–1109 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Shu, Y., Cinier, M., Fox, S. R., Ben-Johnathan, N. & Guo, P. Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Mol. Ther. 19, 1304–1311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 6, 658–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sharma, A. et al. Controllable self-assembly of RNA dendrimers. Nanomedicine 12, 835–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H. et al. Construction of RNA nanotubes. Nano Res. 12, 1952–1958 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. RNA nanotechnology to build a dodecahedral genome of single-stranded RNA virus. RNA Biol. 18, 2390–2400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jasinski, D. L., Khisamutdinov, E. F., Lyubchenko, Y. L. & Guo, P. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 8, 7620–7629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khisamutdinov, E. F., Jasinski, D. L. & Guo, P. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8, 4771–4781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khisamutdinov, E. F. et al. Simple method for constructing RNA triangle, square, pentagon by tuning interior RNA 3WJ angle from 60 degrees to 90 degrees or 108 degrees. Methods Mol. Biol. 1316, 181–193 (2015).

    Article  PubMed  Google Scholar 

  64. Shu, Y. et al. RNA-based micelles: a novel platform for paclitaxel loading and delivery. J. Control. Release 276, 17–29 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shopsowitz, K. E., Roh, Y. H., Deng, Z. J., Morton, S. W. & Hammond, P. T. RNAi-microsponges form through self-assembly of the organic and inorganic products of transcription. Small 10, 1623–1633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bui, M. N. et al. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology. Nanomedicine 13, 1137–1146 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Zakrevsky, P. et al. Truncated tetrahedral RNA nanostructures exhibit enhanced features for delivery of RNAi substrates. Nanoscale 12, 2555–2568 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Lin, Y. X. et al. RNA nanotechnology-mediated cancer immunotherapy. Theranostics 10, 281–299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jaeger, L., Westhof, E. & Leontis, N. B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shu, Y., Shu, D., Haque, F. & Guo, P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat. Protoc. 8, 1635–1659 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Shu, Y. et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19, 767–777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, T. J. et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 6, 14766–14776 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cui, D. et al. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci. Rep. 5, 10726–10739 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rychahou, P. et al. Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS Nano 9, 1108–1116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. et al. Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano 11, 335–346 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, T. J. et al. RNA nanoparticle-based targeted therapy for glioblastoma through inhibition of oncogenic miR-21. Mol. Ther. 25, 1544–1555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pang, L. et al. EpCAM-targeted 3WJ RNA nanoparticle harboring delta-5-desaturase siRNA inhibited lung tumor formation via DGLA peroxidation. Mol. Ther. Nucleic Acids 22, 222–235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beaucage, S. L. & Caruthers, M. H. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862 (1981).

    Article  CAS  Google Scholar 

  79. Beaucage, S. L. & Iyer, R. P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrehedron 48, 2223–2311 (1992).

    Article  CAS  Google Scholar 

  80. Flemmich, L., Bereiter, R. & Micura, R. Chemical synthesis of modified RNA. Angew. Chem. Int. Ed. Engl. 63, e202403063 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Brown, D. M. A brief history of oligonucleotide synthesis. Methods Mol. Biol. 20, 1–17 (1993).

    CAS  PubMed  Google Scholar 

  82. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Brown, T. & Norden, B. Nobel Prize 2022 to Sharpless, Meldal, Bertozzi Click Chemistry - molecular lego. Q. Rev. Biophys. 55, e13 (2022).

    Article  PubMed  Google Scholar 

  84. Huisgen, R. Centenary lecture - 1,3-dipolar cycloadditions. Proc. Chem. Soc. 357–396 (1961).

  85. Diamond, J. M., Turner, D. H. & Mathews, D. H. Thermodynamics of three-way multibranch loops in RNA. Biochemistry 40, 6971–6981 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, H. et al. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA 19, 1226–1237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jedrzejczyk, D. & Chworos, A. Self-assembling RNA nanoparticle for gene expression regulation in a model system. ACS Synth. Biol. 8, 491–497 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Duckett, D. R., Murchie, A. I. & Lilley, D. M. The global folding of four-way helical junctions in RNA, including that in U1 snRNA. Cell 83, 1027–1036 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Haque, F. et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7, 245–257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Severcan, I., Geary, C., Verzemnieks, E., Chworos, A. & Jaeger, L. Square-shaped RNA particles from different RNA folds. Nano Lett. 9, 1270–1277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dibrov, S. M., McLean, J., Parsons, J. & Hermann, T. Self-assembling RNA square. Proc. Natl Acad. Sci. USA. 108, 6405–6408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharan, R., Bindewald, E., Kasprzak, W. K. & Shapiro, B. A. Computational generation of RNA nanorings. Methods Mol. Biol. 1632, 19–32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oi, H. et al. Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes. J. Biochem. 161, 451–462 (2017).

    CAS  PubMed  Google Scholar 

  94. Li, H. et al. Controllable self-assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv. Mater. 28, 7501–7507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Purzycka, K. J. et al. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Methods Enzymol. 553, 3–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Khisamutdinov, E. F. et al. Fabrication of RNA 3D nanoprisms for loading and protection of small RNAs and model drugs. Adv. Mater. 28, 10079–10087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin, H., Wang, H., Li, Z., Shu, D. & Guo, P. RNA micelles for the systemic delivery of anti-miRNA for cancer targeting and inhibition without ligand. ACS Nano 13, 706–717 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Esposito, C. L. et al. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS ONE 6, e24071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shigdar, S. et al. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 102, 991–998 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Spencer, C. M. & Faulds, D. Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48, 794–847 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Singh, S. & Dash, A. K. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit. Rev. Ther. Drug Carr. Syst. 26, 333–372 (2009).

    Article  CAS  Google Scholar 

  102. Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 148, 104398 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Schultz, A. G. Camptothecin. Chem. Rev. 73, 385–405 (1973).

    Article  CAS  PubMed  Google Scholar 

  104. Muggia, F. M., Dimery, I. & Arbuck, S. G. Camptothecin and its analogs. An overview of their potential in cancer therapeutics. Ann. N. Y. Acad. Sci. 803, 213–223 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Neises, B. & Steglich, W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. Engl. 17, 522–524 (1978).

    Article  Google Scholar 

  106. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Bangham, A. D., Standish, M. M. & Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965).

    Article  CAS  PubMed  Google Scholar 

  108. Mehta, M. et al. Lipid-based nanoparticles for drug/gene delivery: an overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au 3, 600–619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yingchoncharoen, P., Kalinowski, D. S. & Richardson, D. R. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol. Rev. 68, 701–787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sheoran, S., Arora, S., Samsonraj, R., Govindaiah, P. & Vuree, S. Lipid-based nanoparticles for treatment of cancer. Heliyon 8, e09403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin, X. et al. Lipid nanoparticles for chemotherapeutic applications: strategies to improve anticancer efficacy. Expert Opin. Drug Deliv. 9, 767–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Haider, M., Abdin, S. M., Kamal, L. & Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics 12, 288 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van der Koog, L., Gandek, T. B. & Nagelkerke, A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv. Healthc. Mater. 11, e2100639 (2022).

    Article  PubMed  Google Scholar 

  114. Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Inglut, C. T. et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 10, 190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alavi, M. & Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. https://doi.org/10.1515/dmpt-2018-0032 (2019).

  117. Garcia-Pinel, B. et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 9, 638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yousefi Rizi, H. A., Hoon Shin, D. & Yousefi Rizi, S. Polymeric nanoparticles in cancer chemotherapy: a narrative review. Iran. J. Public Health 51, 226–239 (2022).

    PubMed  PubMed Central  Google Scholar 

  119. Rosenblum, D., Joshi, N., Tao, W., Karp, J.M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 22, 1410 (2018).

    Article  Google Scholar 

  120. Beach, M. A. et al. Polymeric nanoparticles for drug delivery. Chem. Rev. 124, 5505–5616 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salari, N. et al. Polymer-based drug delivery systems for anticancer drugs: a systematic review. Cancer Treat. Res. Commun. 32, 100605 (2022).

    PubMed  Google Scholar 

  122. Shah, A. S., Surnar, B., Kolishetti, N. & Dhar, S. Intersection of inorganic chemistry and nanotechnology for the creation of new cancer therapies. Acc. Mater. Res. 3, 283–296 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khorenko, M. et al. Theranostic inorganic-organic hybrid nanoparticles with a cocktail of chemotherapeutic and cytostatic drugs. J. Mater. Chem. B 11, 3635–3649 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Barbero, F., Gul, S., Perrone, G. & Fenoglio, I. Photoresponsive inorganic nanomaterials in oncology. Technol. Cancer Res. Treat. 22, 15330338231192850 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Alkilany, A. M. et al. PLGA-gold nanocomposite: preparation and biomedical applications. Pharmaceutics 14, 660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hoogenboezem, E. N. & Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kong, L. et al. Gemcitabine-loaded albumin nanoparticle exerts an antitumor effect on gemcitabine-resistant pancreatic cancer cells induced by MDR1 and MRP1 overexpression in vitro. Front. Surg. 9, 890412 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kunde, S. S. & Wairkar, S. Targeted delivery of albumin nanoparticles for breast cancer: a review. Colloids Surf. B Biointerfaces 213, 112422 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Hirsh, V. nab-paclitaxel for the management of patients with advanced non-small-cell lung cancer. Expert Rev. Anticancer Ther. 14, 129–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Gradishar, W. J. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin. Pharmacother. 7, 1041–1053 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Lee, H. et al. Efficacy and safety of nanoparticle-albumin-bound paclitaxel compared with solvent-based taxanes for metastatic breast cancer: a meta-analysis. Sci. Rep. 10, 530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Alhebshi, S. A. et al. Toxicity of nab-paclitaxel compared to paclitaxel in a tertiary hospital in Jeddah, Saudi Arabia: a retrospective cohort study. Cureus 15, e39872 (2023).

    PubMed  PubMed Central  Google Scholar 

  133. Dumontet, C., Reichert, J. M., Senter, P. D., Lambert, J. M. & Beck, A. Antibody-drug conjugates come of age in oncology. Nat. Rev. Drug Discov. 22, 641–661 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Chau, C. H., Steeg, P. S. & Figg, W. D. Antibody-drug conjugates for cancer. Lancet 394, 793–804 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  137. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Seeman, N. & Sleiman, H. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  139. Saito, S. SELEX-based DNA aptamer selection: a perspective from the advancement of separation techniques. Anal. Sci. 37, 17–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, J. et al. DNA nanobarrel-based drug delivery for paclitaxel and doxorubicin. Chembiochem 24, e202300424 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, X. Q. et al. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano 5, 6962–6970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hao, C. et al. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat. Commun. 5, 3890–3897 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Yu, J., Liu, Z., Jiang, W., Wang, G. & Mao, C. De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nat. Commun. 6, 5724 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Severcan, I. et al. A polyhedron made of tRNAs. Nat. Chem. 2, 772–779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Grabow, W. W. et al. Self-assembling RNA nanorings based on RNAI/II inverse cissing Complexes. Nano Lett. 11, 878–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hoiberg, H. C., Sparvath, S. M., Andersen, V. L., Kjems, J. & Andersen, E. S. An RNA origami octahedron with intrinsic siRNAs for potent gene knockdown. Biotechnol. J. 14, e1700634 (2019).

    Article  PubMed  Google Scholar 

  148. Stewart, J. M. et al. Programmable RNA microstructures for coordinated delivery of siRNAs. Nanoscale 8, 17542–17550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bila, D., Radwan, Y., Dobrovolskaia, M. A., Panigaj, M. & Afonin, K. A. The recognition of and reactions to nucleic acid nanoparticles by human immune cells. Molecules 26, 4231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hansen, A. L. & Al-Hashimi, H. M. Dynamics of large elongated RNA by NMR carbon relaxation. J. Am. Chem. Soc. 129, 16072–16082 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Zhao, L. & Xia, T. Direct revelation of multiple conformations in RNA by femtosecond dynamics. J. Am. Chem. Soc. 129, 4118–4119 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Hall, K. B. RNA in motion. Curr. Opin. Chem. Biol. 12, 612–618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Al-Hashimi, H. M. & Walter, N. G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, H. et al. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 10, 631–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Harkness, R. W. T. & Mittermaier, A. K. G-quadruplex dynamics. Biochim. Biophys. Acta Proteins Proteom. 1865, 1544–1554 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Danchin, A. A dynamic molecular model for transfer RNA. FEBS Lett. 13, 152–156 (1971).

    Article  CAS  PubMed  Google Scholar 

  158. Jacobson, D. R., McIntosh, D. B., Stevens, M. J., Rubinstein, M. & Saleh, O. A. Single-stranded nucleic acid elasticity arises from internal electrostatic tension. Proc. Natl Acad. Sci. USA 114, 5095–5100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hopfinger, M. C., Kirkpatrick, C. C. & Znosko, B. M. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides. Nucleic Acids Res. 48, 8901–8913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Adams, M. S. & Znosko, B. M. Thermodynamic characterization and nearest neighbor parameters for RNA duplexes under molecular crowding conditions. Nucleic Acids Res. 47, 3658–3666 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14719–14735 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Dubey, A. & Bandyopadhyay, M. DNA breathing dynamics under periodic forcing: study of several distribution functions of relevant Brownian functionals. Phys. Rev. E 100, 052107 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Cao, S. & Chen, S. J. Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res. 34, 2634–2652 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Staple, D. W. & Butcher, S. E. Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3, e213 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wyatt, J. R., Puglisi, J. D. & Tinoco, I. Jr. RNA folding: pseudoknots, loops and bulges. Bioessays 11, 100–106 (1989).

    Article  CAS  PubMed  Google Scholar 

  166. Ottink, O. M. et al. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. RNA 13, 2202–2212 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Williamson, J. R. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Ribas de Pouplana, L., Auld, D. S., Kim, S. & Schimmel, P. A mechanism for reducing entropic cost of induced fit in protein—RNA recognition. Biochemistry 35, 8095–8102 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. Haller, A., Rieder, U., Aigner, M., Blanchard, S. C. & Micura, R. Conformational capture of the SAM-II riboswitch. Nat. Chem. Biol. 7, 393–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Pitici, F., Beveridge, D. L. & Baranger, A. M. Molecular dynamics simulation studies of induced fit and conformational capture in U1A-RNA binding: do molecular substates code for specificity?. Biopolymers 65, 424–435 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Leulliot, N. & Varani, G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Tinoco, I. Jr., Li, P. T. & Bustamante, C. Determination of thermodynamics and kinetics of RNA reactions by force. Q. Rev. Biophys. 39, 325–360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Harlepp, S. et al. Probing complex RNA structures by mechanical force. Eur. Phys. J. E Soft Matter 12, 605–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Higgs, P. G. & Lehman, N. The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. 16, 7–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Altman, S. The RNA-protein world. RNA 19, 589–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cech, T. R. The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4, a006742 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rychahou, P. et al. Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J. Control. Release 275, 85–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tarapore, P., Shu, Y., Guo, P. & Ho, S. M. Application of Phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Mol. Ther. 19, 386–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Pi, F. et al. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine 13, 1183–1193 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Guo, S. et al. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1582 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Rebolledo, L. P. et al. Nucleic acid nanobiosystems for cancer theranostics: an overview of emerging trends and challenges. Nanomedicine 20, 1281–1298 (2025).

    Article  CAS  PubMed  Google Scholar 

  182. Yip, T., Qi, X., Yan, H. & Chang, Y. Therapeutic applications of RNA nanostructures. RSC Adv. 14, 28807–28821 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Li, X., Vieweger, M. & Guo, P. Self-assembly of four generations of RNA dendrimers for drug shielding with controllable layer-by-layer release. Nanoscale 12, 16514–16525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hardonk, M. J., Harms, G. & Koudstaal, J. Zonal heterogeneity of rat hepatocytes in the in vivo uptake of 17 nm colloidal gold granules. Histochemistry 83, 473–477 (1985).

    Article  CAS  PubMed  Google Scholar 

  185. Haseltine, W. A., Hazel, K. & Patarca, R. RNA structure: past, future, and gene therapy applications. Int. J. Mol. Sci. 26, 110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Biesiada, M., Pachulska-Wieczorek, K., Adamiak, R. W. & Purzycka, K. J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 103, 120–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Cheng, C. Y., Chou, F. C. & Das, R. Modeling complex RNA tertiary folds with Rosetta. Methods Enzymol. 553, 35–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhou, Y. & Chen, S. J. Harnessing computational approaches for RNA-targeted drug discovery. RNA Nanomed. 1, 1–15 (2024).

    PubMed  PubMed Central  Google Scholar 

  190. Liu, J. et al. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Pallan, P. S. et al. Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Res. 39, 3482–3495 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Xu, X., Dickey, D. D., Chen, S. J. & Giangrande, P. H. Structural computational modeling of RNA aptamers. Methods 103, 175–179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016).

    Article  PubMed  Google Scholar 

  194. Magnus, M., Boniecki, M. J., Dawson, W. & Bujnicki, J. M. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res. 44, W315–W319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang, D. & Chen, S. J. IsRNA: an iterative simulated reference state approach to modeling correlated interactions in RNA folding. J. Chem. Theory Comput. 14, 2230–2239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cruz, J. A. et al. RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18, 610–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sun, L. Z., Jiang, Y., Zhou, Y. & Chen, S. J. RLDOCK: a new method for predicting RNA-ligand interactions. J. Chem. Theory Comput. 16, 7173–7183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang, S., Cheng, Y., Guo, P. & Chen, S. J. VfoldMCPX: predicting multistrand RNA complexes. RNA 28, 596–608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Park, H. S. et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod. Pathol. 27, 1212–1222 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Rockey, W. M. et al. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic Acid Ther. 21, 299–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Seifert, R., Alberts, I. L., Afshar-Oromieh, A. & Rahbar, K. Prostate cancer theranostics: PSMA targeted therapy. PET Clin. 16, 391–396 (2021).

    Article  PubMed  Google Scholar 

  203. Wang, F., Li, Z., Feng, X., Yang, D. & Lin, M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis. 25, 11–26 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Yu, L., Chen, L., Satyabola, D., Prasad, A. & Yan, H. NucleoCraft: the art of stimuli-responsive precision in DNA and RNA bioengineering. BME Front. 5, 0050 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sabir, F. et al. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: applications and challenges. Cancers 13, 3396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rychahou, P. et al. pH-responsive bond as a linker for the release of chemical drugs from RNA-drug complexes in endosome or lysosome. RNA Nanomed. 1, 91–108 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Zhu, S. et al. Stimuli-responsive aptamer-drug conjugates for targeted drug delivery and controlled drug release. Adv. Healthc. Mater. 13, e2401020 (2024).

    Article  PubMed  Google Scholar 

  209. Thomas, R. G., Surendran, S. P. & Jeong, Y. Y. Tumor microenvironment-stimuli responsive nanoparticles for anticancer therapy. Front. Mol. Biosci. 7, 610533 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Dong, X., Brahma, R. K., Fang, C. & Yao, S. Q. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem. Sci. 13, 4239–4269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rautio, J. et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7, 255–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Festa, R. A. & Thiele, D. J. Copper: an essential metal in biology. Curr. Biol. 21, R877–R883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cervantes-Cervantes, M. P., Calderon-Salinas, J. V., Albores, A. & Munoz-Sanchez, J. L. Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol. Trace Elem. Res. 103, 229–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Binzel, D. W., Khisamutdinov, E. F. & Guo, P. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 53, 2221–2231 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Binzel, D. W. & Guo, P. Synergistic RNA particles for spontaneous and specific cancer targeting but low toxicity due to motility and deformation. Nanomedicine 20, 1513–1515 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Carroll for his comments on this manuscript ahead of submission. This Protocol is a comprehensive outcome supported by many years of funding from the NIH. During the preparation and revision of this manuscript, T.Y. and K.J. were supported in part by the President Research Excellence Catalyst Award to P.G. from OSU; and effort in part to P.G. and D.W.B. by R01CA293945 and R01CA257961, respectively.

Author information

Authors and Affiliations

Authors

Contributions

P.G. and D.W.B. conceived and led the project. D.W.B., K.J. and Y.T. designed and conducted the experiments and co-wrote the manuscript with P.G.

Corresponding authors

Correspondence to Daniel W. Binzel or Peixuan Guo.

Ethics declarations

Competing interests

P.G. is the licenser of Oxford Nanopore Technologies; co-founder of ExonanoRNA, LLC; and a consultant for RNA Nanobiotics.

Peer review

Peer review information

Nature Protocols thanks Yuting Wen, Alex G. Hamilton, Xiangang Huang, Jinhwan Kim, Jong Bum Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Guo, S. et al. Nat. Commun. 11, 972–982 (2020): https://doi.org/10.1038/s41467-020-14780-5

Piao, X. et al. Adv. Sci. 6, 1900951 (2019): https://doi.org/10.1002/advs.201900951

Li, X. et al. Biomaterials 305, 122432 (2023): https://doi.org/10.1016/j.biomaterials.2023.122432

Source data

41596_2025_1306_MOESM1_ESM.xlsx

Source Data Fig. 3 Unprocessed gel, statistical source of data and raw data values. Source Data Fig. 6 Statistical source of data. Source Data Fig. 7 Raw data values. Source Data Fig. 8 Unprocessed gel, statistical source of data, raw data values and raw images. Source Data Fig. 9 Unprocessed gel, statistical source of data, raw data values and raw images. Source Data Fig. 10 Statistical source of data, raw data values and raw images

Supplementary Information

Supplementary Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binzel, D.W., Jin, K., Yudhistira, T. et al. Conjugation of hydrophobic drugs to motile pRNA 4WJ nanoparticles for spontaneous tumor targeting and undetectable toxicity. Nat Protoc (2026). https://doi.org/10.1038/s41596-025-01306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01306-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research