Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Secreted luciferases as a minimally invasive 3R-compliant tool for accurate monitoring of tumor burden

Subjects

Abstract

Preclinical mouse models are indispensable in cancer research, providing insights into tumor biology and therapeutic responses. This protocol describes a minimally invasive blood-based tumor monitoring approach using secreted luciferases for longitudinal tracking of tumor burden in transplantable xenografts and genetically engineered mouse models. Unlike intracellular luciferases used in bioluminescence imaging, secreted luciferases are actively released into circulation, enabling precise quantification from microliter-scale blood samples. We describe a transplantable model, where tumor cells are labeled in vitro using lentiviral transduction before engraftment. Orthogonal secreted luciferases enable multiplexed analysis of distinct tumor populations within a single host, reducing animal numbers and enhancing data density. We also describe an autochthonous lung cancer model, where intratracheal adenoviral delivery of Cre recombinase and CRISPR nucleases induces tumorigenesis through somatic genome editing while activating a conditional secreted luciferase reporter transgene. Tumor-bearing mice undergo routine blood sampling, with luciferase activity measured ex vivo to quantify viable tumor burden. Compared to imaging techniques, this method eliminates anesthesia and contrast agents, minimizing animal stress and enabling frequent monitoring with superior temporal resolution and reduced logistical complexity. The protocol requires only standard molecular biology skills and basic mouse handling expertise. While tumor labeling and growth duration is model dependent, blood sampling requires ~5 min per animal, with all samples from one cohort processed and measured together within 2 h. This approach provides an accessible, cost-effective and scalable alternative to imaging-based tumor monitoring, that is aligned with the 3Rs principles, offering a powerful and ethically sound platform for preclinical cancer research.

Key points

  • Labeling tumor cells with secreted luciferases allows for precise, longitudinal monitoring of tumor growth through analyzing small blood samples. This protocol details the in vitro labeling for transplantable models, the in vivo labeling using conditional luciferase-transgenic mice and the analysis of luciferase blood levels with a plate reader.

  • Compared to elaborate imaging techniques, blood-based monitoring represents a simple, flexible and cost-effective tool that aligns with the 3Rs principles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of tumor monitoring with secreted luciferases.
Fig. 2: Overview of the protocol with applications.
Fig. 3: Monitoring transplanted tumors with secreted luciferases.
Fig. 4: Monitoring tumor drug response with a dual-luciferase approach.
Fig. 5: Monitoring autochthonous lung tumor growth.
Fig. 6: Construction and purification of recombinant adenoviral vectors for autochthonous mouse models.
Fig. 7: Equipment and workflow for intratracheal infections in mice.

Data availability

All data shown in this protocol were previously published. Data shown in Figs. 4 and 5 were extracted from ref. 31 and ref. 26, respectively, and are provided as Source data.

References

  1. Day, C. P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sajjad, H. et al. Cancer models in preclinical research: a chronicle review of advancement in effective cancer research. Anim. Model Exp. Med. 4, 87–103 (2021).

    Article  Google Scholar 

  4. Breitenbach, M., Holcmann, M., Cemazar, M., Lampreht Tratar, U. & Horvat, S. Transgenic mouse models in cancer research. Front. Oncol. 8, 268 (2018).

    Article  Google Scholar 

  5. Olson, B. et al. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kersten, K., Visser, K. E., Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Tannenbaum, J. & Bennett, B. T. The 3Rs then and now. J. Am. Assoc. Lab. Anim. Sci. 54, 120–132 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Stribbling, S. M. & Ryan, A. J. The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat. Protoc. 17, 2108–2128 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Mezzanotte, L., van ‘t Root, M., Karatas, H., Goun, E. A. & Löwik, C. W. G. M. In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol. 35, 640–652 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, S., Su, Y., Lin, M. Z. & Ronald, J. A. Brightening up biology: advances in luciferase systems for in vivo imaging. ACS Chem. Biol. 16, 2707–2718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prescher, J. A. & Contag, C. H. Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 14, 80–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Curtis, A., Calabro, K., Galarneau, J.-R., Bigio, I. J. & Krucker, T. Temporal variations of skin pigmentation in C57BL/6 mice affect optical bioluminescence quantitation. Mol. Imaging Biol. 13, 1114–1123 (2011).

    Article  PubMed  Google Scholar 

  13. Mali, S. B. Bioluminescence in cancer research—applications and challenges. Oral Oncol. Rep. 9, 100127 (2024).

    Article  Google Scholar 

  14. Tivey, A., Church, M., Rothwell, D., Dive, C. & Cook, N. Circulating tumour DNA—looking beyond the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wurdinger, T. et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5, 171–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tannous, B. A. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat. Protoc. 4, 582–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Charles, J. P. et al. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases. Nat. Commun. 5, 3981 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Markova, S. V., Larionova, M. D. & Vysotski, E. S. Invited review shining light on the secreted luciferases of marine copepods: current knowledge and applications. Photochem. Photobiol. 95, 705–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Nakajima, Y., Kobayashi, K., Yamagishi, K., Enomoto, T. & Ohmiya, Y. cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca. Biosci. Biotechnol. Biochem. 68, 565–570 (2004).

    Article  PubMed  Google Scholar 

  20. Chung, E. et al. Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE 4, 8316 (2009).

    Article  Google Scholar 

  21. Van Rijn, S. et al. Functional multiplex reporter assay using tagged Gaussia luciferase. Sci. Rep. 3, 1046 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim, H., Kim, M., Im, S. K. & Fang, S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab. Anim. Res. 34, 147–159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dow, L. E. et al. Inducible in vivo genome editing with CRISPR–Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sánchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR–Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merle, N. et al. Monitoring autochthonous lung tumors induced by somatic CRISPR gene editing in mice using a secreted luciferase. Mol. Cancer 21, 191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schaffer, B. E. et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 70, 3877–3883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vogiatzi, F. et al. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc. Natl Acad. Sci. USA 113, 8433–8441 (2016).

    Article  Google Scholar 

  30. Pavlakis, E. et al. Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: a druggable target for inhibiting integrin-α5-driven metastasis. J. Exp. Clin. Cancer Res. 42, (2023).

  31. Gremke, N. et al. Targeting PI3K inhibitor resistance in breast cancer with metabolic drugs. Signal Transduct. Target. Ther. 10, 92 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pereira Ferrari, D., Ramos-Gomes, F., Alves, F. & Andrea Markus, M. KPC-luciferase-expressing cells elicit an anti-tumor immune response in a mouse model of pancreatic cancer. Sci. Rep. 14, 13602 (2024).

    Article  Google Scholar 

  33. Baklaushev, V. P. et al. Luciferase expression allows bioluminescence imaging but imposes limitations on the orthotopic mouse (4T1) model of breast cancer. Sci. Rep. 7, 7715 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC Class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grzelak, C. A. & Ghajar, C. M. Incorporating centrally tolerized mice as a design principle to circumvent reporter immunogenicity in cancer research models. Cancer Res. 85, 2143–2145 (2025).

    Article  CAS  PubMed  Google Scholar 

  36. Gremke, N. et al. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat. Commun. 11, 4684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wanzel, M. et al. CRISPR–Cas9-based target validation for p53-reactivating model compounds. Nat. Chem. Biol. 12, 22–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. He, L. et al. A protocol for in vivo analysis of liver tumorigenesis in mice using sleeping beauty transposon system. STAR Protoc. 2, 100445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, X. & Calvisi, D. F. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am. J. Pathol. 184, 912–923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bell, J. B. et al. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat. Protoc. 2, 3153–3165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y., Tseng, J.-C., Sun, Y., Beck, A. H. & Kung, A. L. Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer. Cold Spring Harb. Protoc. 2, 135–144 (2015).

    Google Scholar 

  43. Serkova, N. J. et al. Preclinical applications of multi-platform imaging in animal models of cancer. Cancer Res. 81, 1189–1200 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Hildebrandt, I. J., Su, H. & Weber, W. A. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 49, 17–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Balaban, R. S. & Hampshire, V. A. Challenges in small animal noninvasive imaging. ILAR J. 42, 248–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Tremoleda, J. L., Kerton, A. & Gsell, W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res. 2, 1–23 (2012).

    Article  Google Scholar 

  47. Franz, F., Edgar, E., Axel, B. & Albert-Georg, L. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    Article  Google Scholar 

  48. Franz, F., Edgar, E., Albert-Geord, L. & Axel, B. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  Google Scholar 

  49. Dülsner, A. et al. Recommendation for Blood Sampling in Laboratory Animals, Especially Small Laboratory Animals (GV-SOLAS, TVT, 2017).

  50. Kutner, R. H., Zhang, X. Y. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 495–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Jager, L. et al. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat. Protoc. 4, 547–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lei, C., Yang, J., Hu, J. & Sun, X. On the calculation of TCID50 for quantitation of virus infectivity. Virol. Sin. 36, 141–144 (2021).

    Article  PubMed  Google Scholar 

  53. Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, 168 (2014).

    Article  Google Scholar 

  54. Sanjana, N. E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dupage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyer, N. et al. Impact of three commonly used blood sampling techniques on the welfare of laboratory mice: taking the animal’s perspective. PLoS ONE 8, e0238895 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The development of this protocol was supported by grants from von Behring-Röntgen Stiftung (71_0012), Deutsche Forschungsgemeinschaft (GRK 2573, STI 182/15-1), Wilhelm Sander-Stiftung (2022.129.1), Universitätsklinikum Giessen and Marburg (5/2025 MR), and State of Hesse (LOEWE, iCANx). Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

N.M., I.B., O.T. and S.E. developed and refined the protocols. T.S. conceived the overall concept and designed the methodological framework. N.M. and I.B. drafted the manuscript, and all authors contributed to revising and refining the final version.

Corresponding author

Correspondence to Thorsten Stiewe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Takahiro Kuchimaru, Scott Lyons and Laura Mezzanotte for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Charles, J. P. et al. Nat. Commun. 5, 3981 (2014): https://doi.org/10.1038/ncomms4981

Merle, N. et al. Mol. Cancer 21, 191 (2022): https://doi.org/10.1186/s12943-022-01661-2

Vogiatzi, F. et al. Proc. Natl Acad. Sci. USA 113, E8433–E8442 (2016): https://doi.org/10.1073/pnas.1612711114

Pavlakis, E. et al. J. Exp. Clin. Cancer Res. 42, 203 (2023): https://doi.org/10.1186/s13046-023-02785-z

Gremke, N. et al. Signal Transduct. Target. Ther. 10, 92 (2025): https://doi.org/10.1038/s41392-025-02180-4

Source data

Source Data Fig. 4, 5

Source data for graphs in Fig. 4a–f. Source data for graphs in Fig. 5b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merle, N., Bullwinkel, I., Timofeev, O. et al. Secreted luciferases as a minimally invasive 3R-compliant tool for accurate monitoring of tumor burden. Nat Protoc (2026). https://doi.org/10.1038/s41596-025-01315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01315-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer