Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Chromosome-level genome assembly and annotation of the tropical sea cucumber Bohadschia ocellate
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 17 December 2025

Chromosome-level genome assembly and annotation of the tropical sea cucumber Bohadschia ocellate

  • Qianying Huang1 na1,
  • Xuan Wang2 na1,
  • Zhou Qin2,
  • Dingding Fan  ORCID: orcid.org/0000-0002-8201-38462,
  • Hua Ge1,
  • Yingxin Lin1,
  • Junyan Wang1,
  • Yun Yang3,
  • Zhenyu Xie3,
  • Da Huo4,
  • Chang Chen4,
  • Haipeng Qin5,
  • Xiaoli Zhang1,
  • Xiangxing Zhu1,
  • Dongsheng Tang1,
  • Chunhua Ren2,
  • Chaoqun Hu2,
  • Ting Chen  ORCID: orcid.org/0000-0002-5777-909X2 &
  • …
  • Aifen Yan1 

Scientific Data , Article number:  (2025) Cite this article

  • 1109 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • DNA sequencing
  • Open reading frames

Abstract

A chromosome-level genome assembly of Bohadschia ocellata, a member of the Holothuriidae family, was constructed through the integration of MGI DNBSEQ-T7 short-read sequencing, PacBio HiFi long-read sequencing, and Hi-C genomic scaffolding technology. After optimization to eliminate redundant sequences, the genome assembly was precisely anchored to 23 chromosomes, resulting in a total size of 909.18 Mb. The N50 of its contig and scaffold sequences were 12.00 Mb and 38.97 Mb, respectively, confirming that the assembly was highly continuous. According to Merqury and BUSCO evaluations, the genome assembly reached a QV of 64.44 and completeness of 94.40%. From this assembly, 31,277 protein-coding genes were identified, which were 98.10% complete based on BUSCO assessment of the predicted proteome. Functional annotations were obtained from at least one database for more than 99% of these genes. This high-quality B. ocellata genome assembly from the current study could offer valuable information for further genetic and evolutionary studies of this sea cucumber species.

Similar content being viewed by others

Chromosome-level genome assembly and annotation of the tropical sea cucumber Holothuria fuscocinerea

Article Open access 24 January 2026

Chromosome-level genome assembly of the sea cucumber, Colochirus anceps

Article Open access 14 October 2025

Chromosomal-level genome assembly and annotation of the tropical sea cucumber Holothuria scabra

Article Open access 09 May 2024

Data availability

All sequencing and assembly data generated in this study have been deposited in public repositories. Raw sequencing data including BGI short-reads, PacBio HiFi long-reads, Hi-C reads and RNA-seq data are available at NCBI Sequence Read Archive database under the number SRP58693854 (https://identifiers.org/ncbi/insdc.sra:SRP586938). The whole genome shotgun project has been deposited in the DDBJ/ENA/GenBank under the accession number JBOCEH00000000055 (https://identifiers.org/ncbi/insdc:JBOCEH000000000). Additionally, the genome assembly, gene annotation and functional annotation are available in the Figshare repository65 (https://doi.org/10.6084/m9.figshare.29124434.v1) or Baiduyun66 (https://pan.baidu.com/s/10DBoB_GQQhThYBiloGInsA?pwd=wmhs).

Code availability

All commands and workflows used for data processing were executed in accordance with the respective software manuals and protocols, with the relevant settings and parameters detailed below:

SOAPnuke (v2.1.4): Employed to filter out low-quality reads from MGI raw sequencing data using the software’s default configurations.

SMRT Link (v13.1): Employed to process and filter PacBio raw sequencing data using default configurations.

Jellyfish (v2.3.0): Utilized to count 21-mers for estimating genome size and heterozygosity.

GenomeScope (v2.0.0): Utilized to process the K-mer frequency histogram for estimating genome size, heterozygosity, and repeat content using default configurations.

Hifiasm (v0.19.8-r603): Utilized to assemble the PacBio HiFi data after reads comparison and self-correct using built-in configurations.

Bwa (v0.7.17-r1188): Utilized to map the MGI short read data onto the draft assembly using built-in configurations.

Pilon (v1.23): Utilized to correct residual errors with Bwa alignment result using built-in configurations.

Purge_dups (v1.2.5): Utilized to reduce redundant haplotigs and determine heterozygosity for the draft genome under a configuration of -j 80 -s 80.

ALLHiC (v1.1): Utilized to assign and orient scaffolds using Hi-C reads into chromosome-level assemblies.

Merqury (v1.3): Utilized to assess k-mer coverage and QV value for the qualification of the assembled genome using best-fit K-mer = 19.

BUSCO (v5.7.1): Utilized to estimate genomic coverage using the metazoa_odb10 data collection.

Circos (v0.69): Utilized to display chromosomal structure and visualize the distribution of gene regions, repeat sequences, SNP percentage and NGS sequencing depth.

RepeatMasker (v4.09): Utilized to annotate transposable elements using built-in configurations.

EDTA: Utilized to annotate de-novo transposable elements using built-in configurations.

Barrnap (v0.9): Utilized to identify ribosomal RNAs (rRNAs) using built-in configurations.

tRNAscan-SE (v2.0.11): Utilized to search for transfer RNAs (tRNAs) sing built-in configurations.

Infernal (v1.1.4): Utilized to identify microRNAs (miRNAs) and small nuclear RNAs (snRNAs) using built-in configurations.

Braker (v3.0.8): Utilized to integrate gene prediction results with 9 selected proteomes and RNAseq reads from tissues with parameters set to gff3, threads 48, prot_seq = pep.fasta, bam = bams and UTR = on.

HISAT2 (v2.2.1): Utilized to map transcriptomic data for genome annotation using built-in configurations.

StringTie (v2.1.7): Utilized to assemble the transcripts for the prediction of gene structures using built-in configurations.

MAKER3 (v3.01.03): Utilized to combine outputs from various prediction modes into the final gene collection using built-in configurations.

BLAST (v2.11.0 +): Employed for synteny analysis and functional annotation of predicted genes using the BLASTP module with an E-value threshold of 1e–⁵.

References

  1. Mercier, A., Gebruk, A., Kremenetskaia, A. & Hamel, J-F. in The World of Sea Cucumbers (ed. Mercier, A., Hamel, J-F., Suhrbier, A. D. & Pearce, C. M.) Ch. 1, https://doi.org/10.1016/B978-0-323-95377-1.00001-1 (London Academic Press, 2023).

  2. Mercier, A. et al. Revered and Reviled: The Plight of the Vanishing Sea Cucumbers. Annu. Rev. Mar. Sci. 17, 115–142, https://doi.org/10.1146/annurev-marine-032123-025441 (2025).

    Google Scholar 

  3. Miller, A. K. et al. Molecular phylogeny of extant Holothuroidea (Echinodermata). Mol. Phylogenet Evol. 111, 110–131, https://doi.org/10.1016/j.ympev.2017.02.014 (2017).

    Google Scholar 

  4. Pearce, C. M., William Gartrell, J., King, X. K. & Zaklan Duff, S. D. in The World of Sea Cucumbers (ed. Mercier, A., Hamel, J-F., Suhrbier, A. D. & Pearce, C. M.) Ch. 2, https://doi.org/10.1016/B978-0-323-95377-1.00014-X (London Academic Press, 2023).

  5. Purcell, S. W. et al. Commercially important sea cucumbers of the world 2nd edn, https://doi.org/10.4060/cc5230en (FAO, 2023).

  6. Gamboa, R. U., Halun, S. Z. B. & Vularika, A. S. in The World of Sea Cucumbers (ed. Mercier, A., Hamel, J-F., Suhrbier, A. D. & Pearce, C. M.) Ch. 9, https://doi.org/10.1016/B978-0-323-95377-1.00021-7 (London Academic Press, 2023).

  7. Conand, C. Tropical sea cucumber fisheries: Changes during the last decade. Mar. Pollut. Bull. 133, 590–594, https://doi.org/10.1016/j.marpolbul.2018.05.014 (2018).

    Google Scholar 

  8. Slater, M. in The World of Sea Cucumbers (ed. Mercier, A., Hamel, J-F., Suhrbier, A. D. & Pearce, C. M.) Ch. 41, https://doi.org/10.1016/B978-0-323-95377-1.00022-9 (London Academic Press, 2023).

  9. Wolfe, K. in The World of Sea Cucumbers (ed. Mercier, A., Hamel, J-F., Suhrbier, A. D. & Pearce, C. M.) Ch. 28, https://doi.org/10.1016/B978-0-323-95377-1.00028-X (London Academic Press, 2023).

  10. Phelps Bondaroff, T. N. & Morrow, F. in The World of Sea Cucumbers (ed. Mercier, A., Hamel, J-F., Suhrbier, A. D. & Pearce, C. M.) Ch. 13, https://doi.org/10.1016/B978-0-323-95377-1.00009-6 (London Academic Press, 2023).

  11. Hamel, J. F. et al. Global knowledge on the commercial sea cucumber Holothuria scabra. Adv. Mar. Bio. 91, 1–286, https://doi.org/10.1016/bs.amb.2022.04.001 (2022).

    Google Scholar 

  12. Yang, Y. et al. Pipeline for identification of genome-wide microsatellite markers and its application in assessing the genetic diversity and structure of the tropical sea cucumber Holothuria leucospilota. Aquaculture Reports. 37, 102207, https://doi.org/10.1016/j.aqrep.2024.102207 (2024).

    Google Scholar 

  13. Nocillado, J. et al. Spawning induction of the high-value white teatfish sea cucumber, Holothuria fuscogilva, using recombinant relaxin-like gonad stimulating peptide (RGP). Aquaculture. 547, 737422, https://doi.org/10.1016/j.aquaculture.2021.737422 (2022).

    Google Scholar 

  14. Osathanunkul, M. & Suwannapoom, C. Sustainable fisheries management through reliable restocking and stock enhancement evaluation with environmental DNA. Sci. Rep. 13, 11297, https://doi.org/10.1038/s41598-023-38218-2 (2023).

    Google Scholar 

  15. Javanmardi, S., Rezaei Tavabe, K., Moradi, S. & Abed-Elmdoust, A. The effects of dietary levels of the sea cucumber (Bohadschia ocellata Jaeger, 1833) meal on growth performance, blood biochemical parameters, digestive enzymes activity and body composition of Pacific white shrimp (Penaeus vannamei Boone, 1931) juveniles. Iranian Journal of Fisheries Sciences. 19, 2366–2383, https://doi.org/10.22092/ijfs.2020.122330 (2020).

    Google Scholar 

  16. Kim, S. W., Kerr, A. M. & Paulay, G. Colour, confusion, and crossing: resolution of species problems in Bohadschia (Echinodermata: Holothuroidea). Zoological Journal of the Linnean Society. 168, 81–97, https://doi.org/10.1111/zoj.12026 (2013).

    Google Scholar 

  17. Thinh, P. D. et al. Fucosylated Chondroitin Sulfate from Bohadschia ocellata: Structure Analysis and Bioactivities. Processes. 12, 2108, https://doi.org/10.3390/pr12102108 (2024).

    Google Scholar 

  18. Samyn, Y. & Vandenspiegel, D. Sublittoral and bathyal sea cucumbers (Echinodermata: Holothuroidea) from the Northern Mozambique Channel with description of six new species. Zootaxa. 4196, 451–497, https://doi.org/10.11646/zootaxa.4196.4.1 (2016).

    Google Scholar 

  19. Liao, Y. & Clark, A. M. The Echinoderms of Southern China (Science Press, Beijing & New York, 1995).

  20. Amin, A. & Thalib, B. Marine of dentistry: pemanfaatan stichopus hermanii dalam bidang kedokteran gigi (Nas Media Pustaka Press, Indonesia, 2024).

  21. Cheng, H. et al. Taxonomic status and phylogenetic analyses based on complete mitochondrial genome and microscopic ossicles: Redescription of a controversial tropical sea cucumber species (Holothuroidea, Holothuria Linnaeus, 1767). Zoosyst. Evol. 101, 791–804, https://doi.org/10.3897/zse.101.137781 (2025).

    Google Scholar 

  22. Patantis, G., Dewi, A. S., Fawzya, Y. N. & Nursid, M. Identification of Beche-de-mers from Indonesia by molecular approach. Biodiversitas. 20, 537–543, https://doi.org/10.13057/BIODIV/D200233 (2019).

    Google Scholar 

  23. Sun, L., Jiang, C., Su, F., Cui, W. & Yang, H. Chromosome-level genome assembly of the sea cucumber Apostichopus japonicus. Sci. Data. 10, 454, https://doi.org/10.1038/s41597-023-02368-9 (2023).

    Google Scholar 

  24. Chen, T. et al. The Holothuria leucospilota genome elucidates sacrificial organ expulsion and bioadhesive trap enriched with amyloid-patterned proteins. Pnas. 120, e2213512120, https://doi.org/10.1073/pnas.2213512120 (2023).

    Google Scholar 

  25. Zhong, S. et al. Chromosomal-level genome assembly and annotation of the tropical sea cucumber Holothuria scabra. Sci. Data. 11, 474, https://doi.org/10.1038/s41597-024-03340-x (2024).

    Google Scholar 

  26. Chen, T. et al. Chromosome-level genome assembly and annotation of the tropical sea cucumber Stichopus monotuberculatus. Sci. Data. 11, 1245, https://doi.org/10.1038/s41597-024-03985-8 (2024).

    Google Scholar 

  27. Zhang, L. et al. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun. Biol. 5, 224, https://doi.org/10.1038/s42003-022-03176-4 (2022).

    Google Scholar 

  28. Ma, B. et al. Analysis of Complete Mitochondrial Genome of Bohadschia argus (Jaeger, 1833) (Aspidochirotida, Holothuriidae). Animals. 12, 1437, https://doi.org/10.3390/ani12111437 (2022).

    Google Scholar 

  29. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 7, 1–6, https://doi.org/10.1093/gigascience/gix120 (2017).

    Google Scholar 

  30. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162, https://doi.org/10.1038/s41587-019-0217-9 (2019).

    Google Scholar 

  31. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27, 764–770, https://doi.org/10.1093/bioinformatics/btr011 (2011).

    Google Scholar 

  32. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 33, 2202–2204, https://doi.org/10.1093/bioinformatics/btx153 (2017).

    Google Scholar 

  33. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods. 18, 170–175, https://doi.org/10.1038/s41592-020-01056-5 (2021).

    Google Scholar 

  34. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 36, 2896–2898, https://doi.org/10.1093/bioinformatics/btaa025 (2020).

    Google Scholar 

  35. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).

    Google Scholar 

  36. Walker, B. J. et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS. ONE. 9, e112963, https://doi.org/10.1371/journal.pone.0112963 (2014).

    Google Scholar 

  37. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome research. 19, 1639–1645, https://doi.org/10.1101/gr.092759.109 (2009).

    Google Scholar 

  38. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. PNSA. 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).

    Google Scholar 

  39. Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275, https://doi.org/10.1186/s13059-019-1905-y (2019).

    Google Scholar 

  40. Aylward, F. O. Introduction to Prokaryotic gene prediction (CDS and rRNA) V. 2. BMC Bioinformatics. 11, 1, https://doi.org/10.17504/protocols.io.pjrdkm6 (2010).

    Google Scholar 

  41. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research. 25, 955–964, https://doi.org/10.1093/nar/25.5.955 (1997).

    Google Scholar 

  42. Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research. 46, D335–D342, https://doi.org/10.1093/nar/gkx1038 (2018).

    Google Scholar 

  43. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 29, 2933–2935, https://doi.org/10.1093/bioinformatics/btt509 (2013).

    Google Scholar 

  44. Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome research. 18, 188–196, https://doi.org/10.1101/gr.6743907 (2008).

    Google Scholar 

  45. Kim, D. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915, https://doi.org/10.1038/s41587-019-0201-4 (2019).

    Google Scholar 

  46. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295, https://doi.org/10.1038/nbt.3122 (2015).

    Google Scholar 

  47. Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics. 3, lqaa108, https://doi.org/10.1093/nargab/lqaa108 (2021).

    Google Scholar 

  48. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research. 47, D351–D360, https://doi.org/10.1093/nar/gky1100 (2019).

    Google Scholar 

  49. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Research. 45, D158–D169, https://doi.org/10.1093/nar/gkw1099 (2017).

    Google Scholar 

  50. Boutet, E. et al. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Methods in Molecular Biology. 1374, 23–54, https://doi.org/10.1007/978-1-4939-3167-5_2 (2016).

    Google Scholar 

  51. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of molecular biology. 428, 726–731, https://doi.org/10.1016/j.jmb.2015.11.006 (2016).

    Google Scholar 

  52. Camacho, C. et al. BLAST plus: architecture and applications. BMC Bioinformatics. 10, 421, https://doi.org/10.1186/1471-2105-10-421 (2009).

    Google Scholar 

  53. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research. 47, D330–D338, https://doi.org/10.1093/nar/gky1055 (2019).

    Google Scholar 

  54. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP586938 (2025).

  55. Chen, T. Holothuria ocellata isolate DDF-2025, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JBOCEH000000000 (2025).

  56. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662152 (2025).

  57. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662151 (2025).

  58. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR35940911 (2025).

  59. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662153 (2025).

  60. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662154 (2025).

  61. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662155 (2025).

  62. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662156 (2025).

  63. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662157 (2025).

  64. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR33662158 (2025).

  65. Fan, D. Genome sequence of sea cucumber Bohadschia ocellata (Holothuria ocellata). Figshare https://doi.org/10.6084/m9.figshare.29124434.v1 (2025).

  66. Fan, D. Genome sequence of sea cucumber Bohadschia ocellata (Holothuria ocellata). Baiduyun https://pan.baidu.com/s/10DBoB_GQQhThYBiloGInsA?pwd=wmhs (2025).

  67. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).

    Google Scholar 

Download references

Acknowledgements

This study was graciously supported by grants from the National Natural Science Foundation of China (W2512089 to A.Y., and 42176132 and 32573487 to T.C.), the Research on breeding technology of candidate species for Guangdong modern marine ranching (2024-MRB-00-001 to T.C.), and the Guangdong Province Project (2024A1515011418 to T.C.).

Author information

Author notes
  1. These authors contributed equally: Qianying Huang, Xuan Wang.

Authors and Affiliations

  1. School of Medicine, Foshan University, Foshan, 528225, China

    Qianying Huang, Hua Ge, Yingxin Lin, Junyan Wang, Xiaoli Zhang, Xiangxing Zhu, Dongsheng Tang & Aifen Yan

  2. State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China

    Xuan Wang, Zhou Qin, Dingding Fan, Chunhua Ren, Chaoqun Hu & Ting Chen

  3. Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China

    Yun Yang & Zhenyu Xie

  4. Xisha Marine Environment National Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sansha, 573199, China

    Da Huo & Chang Chen

  5. Agro-Tech Extension Center of Guangdong Province, Huizhou, 516081, China

    Haipeng Qin

Authors
  1. Qianying Huang
    View author publications

    Search author on:PubMed Google Scholar

  2. Xuan Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhou Qin
    View author publications

    Search author on:PubMed Google Scholar

  4. Dingding Fan
    View author publications

    Search author on:PubMed Google Scholar

  5. Hua Ge
    View author publications

    Search author on:PubMed Google Scholar

  6. Yingxin Lin
    View author publications

    Search author on:PubMed Google Scholar

  7. Junyan Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Yun Yang
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhenyu Xie
    View author publications

    Search author on:PubMed Google Scholar

  10. Da Huo
    View author publications

    Search author on:PubMed Google Scholar

  11. Chang Chen
    View author publications

    Search author on:PubMed Google Scholar

  12. Haipeng Qin
    View author publications

    Search author on:PubMed Google Scholar

  13. Xiaoli Zhang
    View author publications

    Search author on:PubMed Google Scholar

  14. Xiangxing Zhu
    View author publications

    Search author on:PubMed Google Scholar

  15. Dongsheng Tang
    View author publications

    Search author on:PubMed Google Scholar

  16. Chunhua Ren
    View author publications

    Search author on:PubMed Google Scholar

  17. Chaoqun Hu
    View author publications

    Search author on:PubMed Google Scholar

  18. Ting Chen
    View author publications

    Search author on:PubMed Google Scholar

  19. Aifen Yan
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Chunhua Ren, Chaoqun Hu, Ting Chen, and Aifen Yan planned and conceptualized the research. Qianying Huang, Xuan Wang, Zhou Qin, Hua Ge, Yingxin Lin, Junyan Wang, Yun Yang, Da Huo, Xiaoli Zhang and Xiangxing Zhu acquired and processed the samples. Zhou Qin and Dingding Fan constructed the genome and performed annotations. Qianying Huang, Xuan Wang, Zhou Qin and Dingding Fan analysed gene functions. Qianying Huang, Xuan Wang, Zhou Qin, Dingding Fan and Ting Chen conducted bioinformatic analyses. Zhenyu Xie, Chang Chen, Haipeng Qin, Dongsheng Tang, Chunhua Ren, Chaoqun Hu, Aifen Yan, and Ting Chen offered experimental materials and computational resources. Qianying Huang, Xuan Wang, Dingding Fan, Aifen Yan and Ting Chen composed the manuscript. Ting Chen and Aifen Yan and carried out revisions. All authors have reviewed and consented to the final version of the manuscript.

Corresponding author

Correspondence to Aifen Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Wang, X., Qin, Z. et al. Chromosome-level genome assembly and annotation of the tropical sea cucumber Bohadschia ocellate. Sci Data (2025). https://doi.org/10.1038/s41597-025-06453-z

Download citation

  • Received: 08 August 2025

  • Accepted: 10 December 2025

  • Published: 17 December 2025

  • DOI: https://doi.org/10.1038/s41597-025-06453-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Invertebrate omics

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing