Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
A Global High-Resolution Comprehensive Heat Indices Dataset from 1950 to 2024
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 16 January 2026

A Global High-Resolution Comprehensive Heat Indices Dataset from 1950 to 2024

  • Abdul Malik1,
  • Sateesh Masabathini1,
  • Mohsin Ahmed Shaikh2,
  • Qinqin Kong3,
  • Muhammad Usman4,
  • Dasari Hari Prasad  ORCID: orcid.org/0000-0003-0628-44811 &
  • …
  • Ibrahim Hoteit  ORCID: orcid.org/0000-0002-4661-48551 

Scientific Data , Article number:  (2026) Cite this article

  • 2425 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric science
  • Climate-change impacts
  • Natural hazards

Abstract

Heatwaves are becoming more intense and frequent as global temperatures rise, affecting vulnerable populations, particularly in low-income communities. Addressing the impacts of heatwaves requires high-resolution data to assess their influence on labour productivity, public health, and climate risk. We introduce the Comprehensive Heat Indices (CHI) dataset, a high-resolution (0.1° × 0.1°) hourly dataset from 1950 to 2024, derived from the ERA5 and ERA5-Land reanalyses. The CHI dataset encompasses thirteen heat stress indices, including wet-bulb temperature, universal thermal climate index, mean radiant temperature, wind chill, and lethal heat stress index (Ls). Thresholds for Ls are empirically linked to mortality, enabling the identification of life-threatening heat events. Ls is sensitive to soil moisture variability, improving assessments in agricultural regions. The CHI dataset supports indoor and outdoor applications and is sensitive to humidity, radiation, and wind. Covering the global land area from 60°S to 75°N and 180°W to 180°E, it provides a unique, long-term perspective on spatial and temporal trends in heat stress, which are critical for climate impact research and adaptation planning.

Similar content being viewed by others

Prioritizing heat adaptation measures across Indian cities: a benefit-cost analysis

Article Open access 25 November 2025

Accelerating increase in the duration of heatwaves under global warming

Article 07 July 2025

A global high-resolution and bias-corrected dataset of CMIP6 projected heat stress metrics

Article Open access 12 February 2025

Data availability

The user can freely access the data, along with the user guide, description, and metadata from https://doi.org/10.6084/m9.figshare.30539867.

Code availability

The Python library thermofeel44, used to calculate most of the heat stress indices, is freely available on GitHub at https://github.com/ecmwf/thermofeel. We used thermofeel to compute rh and all heat indices except Tnwb. For Tnwb, along with variables such as cos θ, ws10, ws2, dsrp, and fdir, we utilised the Python code developed by Kong et al.45, which is available at https://zenodo.org/records/5980536. Both the thermofeel44 and Kong et al.45 codes were optimised and adapted to meet the requirements of CHI dataset production. The modified and integrated version of these codes is available for download and further use from the GitHub repository at https://github.com/masabhathini/CHIdatasets.

References

  1. Yan, Y., Xu, Y. & Yue, S. A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Sci. Data 8, 1–14 (2021).

    Google Scholar 

  2. Vanos, J. K., Baldwin, J. W., Jay, O. & Ebi, K. L. Simplicity lacks robustness when projecting heat-health outcomes in a changing climate. Nat. Commun. 11, 10–14 (2020).

    Google Scholar 

  3. Chen, H. et al. Projections of heatwave-attributable mortality under climate change and future population scenarios in China. Lancet Reg. Heal. - West. Pacific 28, 1–11 (2022).

    Google Scholar 

  4. Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Heal. 1, e360–e367 (2017).

    Google Scholar 

  5. Hajat, S., Proestos, Y., Araya-Lopez, J. L., Economou, T. & Lelieveld, J. Current and future trends in heat-related mortality in the MENA region: a health impact assessment with bias-adjusted statistically downscaled CMIP6 (SSP-based) data and Bayesian inference. Lancet Planet. Heal. 7, e282–e290 (2023).

    Google Scholar 

  6. Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, 2011–2030 (2006).

    Google Scholar 

  7. Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change 150, 391–402 (2018).

    Google Scholar 

  8. Wu, Y. et al. Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study. Lancet Planet. Heal. 6, e410–e421 (2022).

    Google Scholar 

  9. Yang, J. et al. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 12, 1–11 (2021).

    Google Scholar 

  10. Zhao, Q. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet. Heal. 5, e415–e425 (2021).

    Google Scholar 

  11. Andrews, O., Le Quéré, C., Kjellstrom, T., Lemke, B. & Haines, A. Implications for workability and survivability in populations exposed to extreme heat under climate change: a modelling study. Lancet Planet. Heal. 2, e540–e547 (2018).

    Google Scholar 

  12. Masuda, Y. J. et al. Impacts of warming on outdoor worker well-being in the tropics and adaptation options. One Earth 7, 382–400 (2024).

    Google Scholar 

  13. Li, W., Chao, L., Si, P., Zhang, H. & Li, Q. Comparisons of the Urbanization Effect on Heat Stress Changes in Guangdong during Different Periods. Remote Sens. 15 (2023).

  14. Rahman, M. A. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci. Rep. 12, 1–13 (2022).

    Google Scholar 

  15. Wang, C. et al. Satellite-based mapping of the Universal Thermal Climate Index over the Yangtze River Delta urban agglomeration. J. Clean. Prod. 277, 123830 (2020).

    Google Scholar 

  16. Mohammad, P. & Weng, Q. Comparing existing heat wave indices in identifying dangerous heat wave outdoor conditions. Nexus 1, 100027 (2024).

    Google Scholar 

  17. Macpherson, R. K. The assessment of the thermal environment. A review. Br. J. Ind. Med. 19, 151–164 (1962).

    Google Scholar 

  18. Budd, G. M. Wet-bulb globe temperature (WBGT)-its history and its limitations. J. Sci. Med. Sport 11, 20–32 (2008).

    Google Scholar 

  19. Barnett, A. G., Tong, S. & Clements, A. C. A. What measure of temperature is the best predictor of mortality? Environ. Res. 110, 604–611 (2010).

    Google Scholar 

  20. Foster, J. et al. Quantifying the impact of heat on human physical work capacity; part II: the observed interaction of air velocity with temperature, humidity, sweat rate, and clothing is not captured by most heat stress indices. Int. J. Biometeorol. 66, 507–520 (2022).

    Google Scholar 

  21. Zhang, Y. & Liu, C. Digital simulation for buildings’ outdoor thermal comfort in urban neighborhoods. Buildings 11 (2021).

  22. Di Napoli, C., Barnard, C., Prudhomme, C., Cloke, H. L. & Pappenberger, F. ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci. Data J. 8, 2–10 (2020).

    Google Scholar 

  23. Simpson, C. H., Brousse, O., Ebi, K. L. & Heaviside, C. Commonly used indices disagree about the effect of moisture on heat stress. npj Clim. Atmos. Sci. 6, 1–7 (2023).

    Google Scholar 

  24. Hersbach, H. et al. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 (2023).

  25. Spangler, K. R., Liang, S. & Wellenius, G. A. Wet-Bulb Globe Temperature, Universal Thermal Climate Index, and Other Heat Metrics for US Counties, 2000–2020. Sci. Data 9, 1–9 (2022).

    Google Scholar 

  26. He, C. et al. The effects of night-time warming on mortality burden under future climate change scenarios: a modelling study. Lancet Planet. Heal. 6, e648–e657 (2022).

    Google Scholar 

  27. Jian, H. et al. A high temporal resolution global gridded dataset of human thermal stress metrics. Sci. data 11, 1116 (2024).

    Google Scholar 

  28. Muñoz Sabater, J. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac (2019).

  29. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Google Scholar 

  30. Wouters, H. et al. Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Sci. Adv. 8, 1–11 (2022).

    Google Scholar 

  31. Im, E. S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, 1–7 (2017).

    Google Scholar 

  32. Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Google Scholar 

  33. Hall, A. & Horta, A. Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates. Int. J. Environ. Res. Public Health 20 (2023).

  34. Stull, R. Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 50, 2267–2269 (2011).

    Google Scholar 

  35. Liljegren, J. C., Carhart, R. A., Lawday, P., Tschopp, S. & Sharp, R. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 5, 645–655 (2008).

    Google Scholar 

  36. Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, 1–10 (2018).

    Google Scholar 

  37. Matthews, T. K. R. et al. Mortality impacts of the most extreme heat events. Nat. Rev. Earth Environ. 6, 193–210, https://doi.org/10.1038/s43017-024-00635-w (2025).

    Google Scholar 

  38. Malik, A. et al. Accelerated historical and future warming in the Middle East and North Africa. J. Geophys. Res. Atmos. 129, e2024JD041625 (2024).

    Google Scholar 

  39. Copernicus Climate Change Service. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.24381/cds.adbb2d47 (2023).

  40. Copernicus Climate Change Service. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac (2019).

  41. Di Napoli, C., Barnard, C., Prudhomme, C., Cloke H. L. & Pappenberger, F. Thermal comfort indices derived from ERA5 reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.553b7518 (2020)

  42. Yan, Y., Xu, Y. & Yue, S. A High-spatial-resolution Dataset of Human Thermal Stress Indices over South and East Asia. figshare 10.6084/m9 (2021).

  43. Jian, H. et al. HiGTS: A high temporal resolution global gridded dataset of human thermal stress metrics. Figshare 10.6084/m9 (2024).

  44. Brimicombe, C. et al. Thermofeel: A python thermal comfort indices library. SoftwareX 18, 101005 (2022).

    Google Scholar 

  45. Kong, Q. & Huber, M. Explicit Calculations of Wet-Bulb Globe Temperature Compared With Approximations and Why It Matters for Labor Productivity. Earth’s Futur. 10 (2022).

  46. Di Napoli, C., Hogan, R. J. & Pappenberger, F. Mean radiant temperature from global-scale numerical weather prediction models. Int. J. Biometeorol. 64, 1233–1245 (2020).

    Google Scholar 

  47. Brimicombe, C. et al. Wet Bulb Globe Temperature: Indicating Extreme Heat Risk on a Global Grid. GeoHealth 7, 1–14 (2023).

    Google Scholar 

  48. Kántor, N. & Unger, J. The most problematic variable in the course of human-biometeorological comfort assessment - The mean radiant temperature. Cent. Eur. J. Geosci. 3, 90–100 (2011).

    Google Scholar 

  49. Li, X., Chakraborty, T. C. & Wang, G. Comparing land surface temperature and mean radiant temperature for urban heat mapping in Philadelphia. Urban Clim. 51, 101615 (2023).

    Google Scholar 

  50. Staiger, H. & Matzarakis, A. Estimating down- and up-welling thermal radiation for use in mean radiant temperature. 7th Conf. Biometeorol. 0, 213–218 (2010).

    Google Scholar 

  51. Jendritzky, G., Menz, H., Schirmer, H. & Schmidt-Kessen, W. Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes KlimaMichel-Modell). Beitr. Akad. Raumforsch. Landesplan. 114 (1990).

  52. Verein Deutscher Ingenieure (VDI). VDI 3787 Part 1: Environmental meteorology—methods for the human biometeorological evaluation of climate and air quality for urban and regional planning. Part I: Climate. Beuth Verlag, Berlin (1998).

  53. Holmer, B., Lindberg, F. & Thorsson, S. Mean radiant temperature and the shape of the standing man. 10th Int. Conf. Urban Clim. 4 (2018).

  54. Halawa, E., Van Hoof, J. & Soebarto, V. The impacts of the thermal radiation field on thermal comfort, energy consumption and control - A critical overview. Renew. Sustain. Energy Rev. 37, 907–918 (2014).

    Google Scholar 

  55. Hajizadeh, R., Farhang Dehghan, S., Golbabaei, F., Jafari, S. M. & Karajizadeh, M. Offering a model for estimating black globe temperature according to meteorological measurements. Meteorol. Appl. 24, 303–307 (2017).

    Google Scholar 

  56. Turco, S.H.N. et al. Estimating black globe temperature based on meteorological data. Livestock Environment VIII Conference, August 31–September 4 2008, Iguassu Falls, Brazil (2009).

  57. Jendritzky, G., de Dear, R. & Havenith, G. UTCI-Why another thermal index? Int. J. Biometeorol. 56, 421–428 (2012).

    Google Scholar 

  58. Bröde, P. et al. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 56, 481–494 (2012).

    Google Scholar 

  59. Hunter, C.H. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements. Proc. Conf. Environmental Applications, 13–17 Jan 2000, Long Beach, CA, USA. WSRC-MS–99–00757, Savannah River Site.

  60. Minard, D. Prevention of heat casualties in Marine Corps recruits. Period of 1955–60, with comparative incidence rates and climatic heat stresses in other training categories. Military Medicine, 126, 261–272 10.1093/ (1961).

  61. Lin, Y. C., Jung, C. R., Hwang, B. F. & Chen, C. P. Investigating wet-bulb globe temperature on heat-related illness in general population for alerting heat exposure: A time-stratified case-crossover study. Urban Clim. 59, 102322 (2025).

    Google Scholar 

  62. Havenith, G. & Fiala, D. Thermal indices and thermophysiological modeling for heat stress. Compr. Physiol. 6, 255–302 (2016).

    Google Scholar 

  63. Masterson, J. & Richardson, F. A. Humidex, A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity. Downsview, Ontario Environ. Canada 45 (1979).

  64. Li, P. W. & Chan, S. T. Application of a weather stress index for alerting the public to stressful weather in Hong Kong. Meteorol. Appl. 7, 369–375 (2000).

    Google Scholar 

  65. Steadman, R. G. A universal scale of apparent temperature. J Clim Appl Meteorol 23(12), 1674–1687 (1984).

    Google Scholar 

  66. Siple, M. P. A. & Army, U. S. Measurements of Dry Atmospheric Cooling in Subfreezing Temperatures Author (s): Paul A. Siple and Charles F. Passel Source: Proceedings of the American Philosophical Society, Vol. 89, No. 1, Reports on Scientific Results of the United States Ant. 89, 177–199 (1945).

  67. Coccolo, S., Kämpf, J., Scartezzini, J. L. & Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 18, 33–57 (2016).

    Google Scholar 

  68. Rothfusz, L.P. The Heat Index “Equation” (or, More Than You Ever Wanted to Know About Heat Index). NWS Southern Region Technical Attachment SR 90-23, National Weather Service, Fort Worth, TX (1990).

  69. Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. & Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 56, 515–535 (2012).

    Google Scholar 

  70. Malik, A. et al. Comprehensive Heat Indices (CHI) Dataset (v1.0). figshare https://doi.org/10.6084/m9.figshare.30539867.v3 (2025).

  71. Raei, E. et al. GHWR, a multi-method global heatwave and warm-spell record and toolbox. Sci Data 5, 180206, https://doi.org/10.1038/sdata.2018.206 (2018).

    Google Scholar 

  72. Błazejczyk, K. et al. An introduction to the Universal thermal climate index (UTCI). Geographia Polonica. 86, 5–10 (2013).

    Google Scholar 

  73. van Hove, L. W. A. et al. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build. Environ. 83, 91–103 (2015).

    Google Scholar 

  74. Wiszniowski, J. Healthy city versus the urban heat island effect in the context of global warming. Passive and active methods reduction of UHI. Builder 284, 29–31 (2021).

    Google Scholar 

  75. Amini, H., Jabari, S. & McGrath, H. Assessing Future Changes in Mean Radiant Temperature: Considering Climate Change and Urban Development Impacts in Fredericton, New Brunswick, Canada, by 2050. GeoHazards 6, 1–13 (2025).

    Google Scholar 

  76. Guo, H., Teitelbaum, E., Houchois, N., Bozlar, M. & Meggers, F. Revisiting the use of globe thermometers to estimate radiant temperature in studies of heating and ventilation. Energy Build 180, 83–94 (2018).

    Google Scholar 

  77. de Dear, R. Ping-pong globe thermometers for mean radiant temperatures. Heat Vent Eng J Air Cond 60, 10–1 (1987).

    Google Scholar 

  78. National Oceanic and Atmospheric Administration (NOAA). The Heat Index Equation https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml (2025).

Download references

Acknowledgements

The present study was funded by the Climate Change Center, King Abdullah University of Science and Technology (KAUST). Muhammad Usman was supported by Zayed University (Research Incentive Fund: RIF 23021), Abu Dhabi, UAE. The authors thank the KAUST Supercomputing Laboratory for providing computing resources. This research used the Shaheen III Supercomputer managed by the Supercomputing Core Laboratory at King Abdullah University of Science & Technology (KAUST). We thank the Climate Data Store (C3S) of the Copernicus Climate Change Service for providing the reanalysis products. This work uses, and may include modifications of, Copernicus Climate Change Service information. Neither the European Commission nor ECMWF is responsible for any use of the Copernicus information or data contained herein.

Author information

Authors and Affiliations

  1. Climate Change Center, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia

    Abdul Malik, Sateesh Masabathini, Dasari Hari Prasad & Ibrahim Hoteit

  2. Supercomputing Lab, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia

    Mohsin Ahmed Shaikh

  3. School of Medicine, Stanford University, Stanford, CA, USA

    Qinqin Kong

  4. College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates

    Muhammad Usman

Authors
  1. Abdul Malik
    View author publications

    Search author on:PubMed Google Scholar

  2. Sateesh Masabathini
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohsin Ahmed Shaikh
    View author publications

    Search author on:PubMed Google Scholar

  4. Qinqin Kong
    View author publications

    Search author on:PubMed Google Scholar

  5. Muhammad Usman
    View author publications

    Search author on:PubMed Google Scholar

  6. Dasari Hari Prasad
    View author publications

    Search author on:PubMed Google Scholar

  7. Ibrahim Hoteit
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.M. – conceptualisation, data acquisition, methodology, formal analysis, technical validation, writing – original draft; S.M. – code optimisation and development, data management, integration, pre-processing, validation, and storage, writing – review & editing; M.A.S. – code compilation, technical assistance, resources provision, writing – review & editing; Q.K. – code scripting, software, writing – review & editing; M.U. – scientific input, writing – review & editing; H.P.D. – writing – review & editing I.H. – writing – review & editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Ibrahim Hoteit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Masabathini, S., Shaikh, M.A. et al. A Global High-Resolution Comprehensive Heat Indices Dataset from 1950 to 2024. Sci Data (2026). https://doi.org/10.1038/s41597-025-06519-y

Download citation

  • Received: 07 August 2025

  • Accepted: 22 December 2025

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41597-025-06519-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing