Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Single-cell and spatial transcriptomic profiling of cardiac fibroblasts following myocardial infarction
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 13 January 2026

Single-cell and spatial transcriptomic profiling of cardiac fibroblasts following myocardial infarction

  • Silvia C. Hernández  ORCID: orcid.org/0000-0002-6525-52961,
  • Marina Ainciburu2 na1,
  • Laura Sudupe3 na1,
  • Nuria Planell4 na1,
  • María López-Moreno5,6,
  • Amaia Vilas-Zornoza2,7,
  • Luis Diaz-Martinez8,
  • Jorge Cobos-Figueroa6,7,
  • Juan P. Romero2,
  • Sarai Sarvide2,7,
  • Patxi San Martin-Uriz  ORCID: orcid.org/0000-0003-1483-42792,7,
  • Ana López-Pérez  ORCID: orcid.org/0000-0002-5159-01229,
  • Gloria Abizanda10,
  • Purificación Ripalda-Cemboráin10,11,
  • Emma Muinos-López  ORCID: orcid.org/0000-0002-6618-413510,11,
  • Vincenzo Lagani3,12,13,
  • Jesper Tegner  ORCID: orcid.org/0000-0002-9568-55883,14,15,16,
  • Ming Wu17,
  • Stefan Janssens17,
  • José M. Pérez-Pomares5,6,
  • Felipe Prósper  ORCID: orcid.org/0000-0001-6115-87902,7,10,18 na2,
  • Adrián Ruiz-Villalba5,6 na2 &
  • …
  • David Gómez-Cabrero  ORCID: orcid.org/0000-0003-4186-37883 na2 

Scientific Data , Article number:  (2026) Cite this article

  • 2017 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Experimental models of disease
  • Heart failure
  • High-throughput screening
  • Mechanisms of disease
  • Translational research

Abstract

Cardiac fibroblasts (CFs) are key mediators of heart repair following myocardial infarction (MI). A specific CF subpopulation, termed Reparative Cardiac Fibroblasts (RCFs), has been shown to orchestrate scar formation and prevent ventricular rupture after MI. However, the timing of RCF appearance and the molecular events underlying this transition remain largely undefined. Here, we present a multi-modal dataset capturing the transcriptional dynamics of CFs during the early phase post-MI. Our integrative dataset combines bulk RNA sequencing, RNAscope in situ hybridization, and spatial transcriptomics to anatomically and temporally map the gene expression changes associated with the transition into RCFs. The dataset provides resources to characterize the distinct molecular programs that guide the emergence of RCFs from Periostin (Postn)+ activated CFs. This dataset provides a valuable resource for investigating CF heterogeneity and reparative pathways following MI. All raw and processed data, along with detailed metadata and annotations, are made available to facilitate reuse by the cardiovascular and single-cell biology communities.

Similar content being viewed by others

In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals

Article 18 June 2024

Targeting immune–fibroblast cell communication in heart failure

Article 23 October 2024

Identification of epigenetic regulators of fibrotic transformation in cardiac fibroblasts through bulk and single-cell CRISPR screens

Article Open access 26 November 2025

Data availability

We confirm that the data is publicly available in the NBCI’s Gene Expression Omnibus database under accession numbers: GSE26142834, GSE26725635, GSE26582836, and GSE13214616.

Code availability

All script for the analysis used to generate the processed data and the visualizations/figures in the present manuscript are available on https://github.com/lsudupe/Cardio_paper/.

References

  1. Thannickal, V. J., Zhou, Y., Gaggar, A. & Duncan, S. R. Fibrosis: ultimate and proximate causes. J Clin Invest 124, 4673–4677, https://doi.org/10.1172/JCI74368 (2014).

    Google Scholar 

  2. Janbandhu, V. et al. Novel Mouse Model for Selective Tagging, Purification, and Manipulation of Cardiac Myofibroblasts. Circulation 149, 1931–1934, https://doi.org/10.1161/CIRCULATIONAHA.123.067754 (2024).

    Google Scholar 

  3. Tsukui, T., Wolters, P. J. & Sheppard, D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature, https://doi.org/10.1038/s41586-024-07660-1 (2024).

  4. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286, https://doi.org/10.1038/s41586-020-2941-1 (2021).

    Google Scholar 

  5. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777, https://doi.org/10.1038/s41586-022-05060-x (2022).

    Google Scholar 

  6. Ruiz-Villalba, A. et al. Single-Cell RNA Sequencing Analysis Reveals a Crucial Role for CTHRC1 (Collagen Triple Helix Repeat Containing 1) Cardiac Fibroblasts After Myocardial Infarction. Circulation 142, 1831–1847, https://doi.org/10.1161/CIRCULATIONAHA.119.044557 (2020).

    Google Scholar 

  7. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281, https://doi.org/10.1038/nature12783 (2013).

    Google Scholar 

  8. Yang, W. et al. Single-Cell Transcriptomic Analysis Reveals a Hepatic Stellate Cell-Activation Roadmap and Myofibroblast Origin During Liver Fibrosis in Mice. Hepatology 74, 2774–2790, https://doi.org/10.1002/hep.31987 (2021).

    Google Scholar 

  9. Amrute, J. M. et al. Targeting immune-fibroblast cell communication in heart failure. Nature 635, 423–433, https://doi.org/10.1038/s41586-024-08008-5 (2024).

    Google Scholar 

  10. Kleinbongard, P. et al. Cardiac fibroblasts: answering the call. Am J Physiol Heart Circ Physiol 327, H681–H686, https://doi.org/10.1152/ajpheart.00478.2024 (2024).

    Google Scholar 

  11. Hilgendorf, I., Frantz, S. & Frangogiannis, N. G. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 134, 1718–1751, https://doi.org/10.1161/CIRCRESAHA.124.323658 (2024).

    Google Scholar 

  12. Rieder, F. et al. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov https://doi.org/10.1038/s41573-025-01158-9 (2025).

    Google Scholar 

  13. Konkimalla, A. et al. Transitional cell states sculpt tissue topology during lung regeneration. Cell Stem Cell 30, 1486–1502 e1489, https://doi.org/10.1016/j.stem.2023.10.001 (2023).

    Google Scholar 

  14. Li, J. et al. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-beta signaling. EBioMedicine 40, 43–55, https://doi.org/10.1016/j.ebiom.2019.01.009 (2019).

    Google Scholar 

  15. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579, https://doi.org/10.1038/s41586-021-03549-5 (2021).

    Google Scholar 

  16. NCBI Gene Expression Omnibus https://identifiers.org/geo/GSE132146 (2020).

  17. Yata, Y. et al. DNase I-hypersensitive sites enhance alpha1(I) collagen gene expression in hepatic stellate cells. Hepatology 37, 267–276, https://doi.org/10.1053/jhep.2003.50067 (2003).

    Google Scholar 

  18. Ruiz-Villalba, A. et al. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J Am Coll Cardiol 65, 2057–2066, https://doi.org/10.1016/j.jacc.2015.03.520 (2015).

    Google Scholar 

  19. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779, https://doi.org/10.1126/science.1247651 (2014).

    Google Scholar 

  20. Lavin, Y. et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell 169, 750–765.e717, https://doi.org/10.1016/j.cell.2017.04.014 (2017).

    Google Scholar 

  21. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21, https://doi.org/10.1093/bioinformatics/bts635 (2013).

    Google Scholar 

  22. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).

  23. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47, e47, https://doi.org/10.1093/nar/gkz114 (2019).

    Google Scholar 

  24. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol 15, 550, https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Google Scholar 

  25. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7, https://doi.org/10.1186/1471-2105-14-7 (2013).

    Google Scholar 

  26. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296, https://doi.org/10.1186/s13059-019-1874-1 (2019).

    Google Scholar 

  27. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902 e1821, https://doi.org/10.1016/j.cell.2019.05.031 (2019).

    Google Scholar 

  28. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol https://doi.org/10.1038/nbt.4314 (2018).

    Google Scholar 

  29. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14, 1083–1086, https://doi.org/10.1038/nmeth.4463 (2017).

    Google Scholar 

  30. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278, https://doi.org/10.1186/s13059-015-0844-5 (2015).

    Google Scholar 

  31. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498, https://doi.org/10.1038/s41586-018-0414-6 (2018).

    Google Scholar 

  32. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol 38, 1408–1414, https://doi.org/10.1038/s41587-020-0591-3 (2020).

    Google Scholar 

  33. Calcagno, D. M. et al. Single-cell and spatial transcriptomics of the infarcted heart define the dynamic onset of the border zone in response to mechanical destabilization. Nature Cardiovascular Research 1, 1039–1055, https://doi.org/10.1038/s44161-022-00160-3 (2022).

    Google Scholar 

  34. NCBI Gene Expression Omnibus https://identifiers.org/geo/GSE261428 (2025).

  35. NCBI Gene Expression Omnibus https://identifiers.org/geo/GSE267256 (2025).

  36. NCBI Gene Expression Omnibus https://identifiers.org/geo/GSE265828 (2025).

  37. Huang, C. et al. Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling. Matrix Biol 110, 40–59, https://doi.org/10.1016/j.matbio.2022.04.005 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional funds (PI16/00129, CPII15/00017, PI19/00501), Red de Terapia Celular RD16/0011/0005 and Ministerio de Economía y Empresa (Program RETOS Cardiomesh), ERANET II (Nanoreheart), and the Horizon 2020 Program BRAVE. Dr Ruiz-Villalba is supported by Fondo Social Europeo/Ministerio de Economía, Industria y Competitividad–Agencia Estatal de Investigación/ IJCI-2016-30254, the Spanish Ministerio de Ciencia, Innovación y Universidades (MICIU)/Agencia estatal de investigación (AEI) (RTI2018-095410-BI00, PID2020-119430RJ-I00, RYC21-034611-I; and CNS2022-135973), European Social Fund Plus (RYC21-034611-I); and European Union NextGenerationEU / Plan de Recuperación, Transformación y Resiliencia (PRTR) (CNS2022-135973). Nuria Planell was supported by grant RYC2021‐032197‐I, funded by MICIU/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR.

Author information

Author notes
  1. These authors contributed equally: Marina Ainciburu, Laura Sudupe, Nuria Planell.

  2. These authors jointly supervised this work: Felipe Prósper, Adrián Ruiz-Villalba, David Gómez-Cabrero.

Authors and Affiliations

  1. The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA

    Silvia C. Hernández

  2. Hemato-Oncology Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain

    Marina Ainciburu, Amaia Vilas-Zornoza, Juan P. Romero, Sarai Sarvide, Patxi San Martin-Uriz & Felipe Prósper

  3. Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

    Laura Sudupe, Vincenzo Lagani, Jesper Tegner & David Gómez-Cabrero

  4. Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain

    Nuria Planell

  5. Department of Animal Biology, Universidad de Málaga, Málaga, Spain

    María López-Moreno, José M. Pérez-Pomares & Adrián Ruiz-Villalba

  6. Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Málaga, Spain

    María López-Moreno, Jorge Cobos-Figueroa, José M. Pérez-Pomares & Adrián Ruiz-Villalba

  7. Centro de Investigación Biomedica en Red de Cancer (CIBERONC), Madrid, Spain

    Amaia Vilas-Zornoza, Jorge Cobos-Figueroa, Sarai Sarvide, Patxi San Martin-Uriz & Felipe Prósper

  8. Centro de Supercomputación y Bioinnovación (SCBI), Universidad de Málaga, Málaga, Spain

    Luis Diaz-Martinez

  9. Navarrabiomed, Fundacion Miguel Servet, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain

    Ana López-Pérez

  10. Regenerative Medicine Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain

    Gloria Abizanda, Purificación Ripalda-Cemboráin, Emma Muinos-López & Felipe Prósper

  11. Department of Orthopedics, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain

    Purificación Ripalda-Cemboráin & Emma Muinos-López

  12. SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal, Saudi Arabia

    Vincenzo Lagani

  13. Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia

    Vincenzo Lagani

  14. Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, SE-171 76, Stockholm, Sweden

    Jesper Tegner

  15. Computer, Electrical and Mathematical Sciences and Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia

    Jesper Tegner

  16. Science for Life Laboratory, Tomtebodavagen 23A, SE-17165, Solna, Sweden

    Jesper Tegner

  17. Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium

    Ming Wu & Stefan Janssens

  18. Hematology and Cell Therapy Department, Clinica Universidad de Navarra, CCUN, IdiSNA, Pamplona, Spain

    Felipe Prósper

Authors
  1. Silvia C. Hernández
    View author publications

    Search author on:PubMed Google Scholar

  2. Marina Ainciburu
    View author publications

    Search author on:PubMed Google Scholar

  3. Laura Sudupe
    View author publications

    Search author on:PubMed Google Scholar

  4. Nuria Planell
    View author publications

    Search author on:PubMed Google Scholar

  5. María López-Moreno
    View author publications

    Search author on:PubMed Google Scholar

  6. Amaia Vilas-Zornoza
    View author publications

    Search author on:PubMed Google Scholar

  7. Luis Diaz-Martinez
    View author publications

    Search author on:PubMed Google Scholar

  8. Jorge Cobos-Figueroa
    View author publications

    Search author on:PubMed Google Scholar

  9. Juan P. Romero
    View author publications

    Search author on:PubMed Google Scholar

  10. Sarai Sarvide
    View author publications

    Search author on:PubMed Google Scholar

  11. Patxi San Martin-Uriz
    View author publications

    Search author on:PubMed Google Scholar

  12. Ana López-Pérez
    View author publications

    Search author on:PubMed Google Scholar

  13. Gloria Abizanda
    View author publications

    Search author on:PubMed Google Scholar

  14. Purificación Ripalda-Cemboráin
    View author publications

    Search author on:PubMed Google Scholar

  15. Emma Muinos-López
    View author publications

    Search author on:PubMed Google Scholar

  16. Vincenzo Lagani
    View author publications

    Search author on:PubMed Google Scholar

  17. Jesper Tegner
    View author publications

    Search author on:PubMed Google Scholar

  18. Ming Wu
    View author publications

    Search author on:PubMed Google Scholar

  19. Stefan Janssens
    View author publications

    Search author on:PubMed Google Scholar

  20. José M. Pérez-Pomares
    View author publications

    Search author on:PubMed Google Scholar

  21. Felipe Prósper
    View author publications

    Search author on:PubMed Google Scholar

  22. Adrián Ruiz-Villalba
    View author publications

    Search author on:PubMed Google Scholar

  23. David Gómez-Cabrero
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.C.H., A.R.V. conceived the study, designed and performed experiments, analyzed and interpreted the data. S.C.H., A.R.V., D.G.C. wrote the manuscript. M.A., L.S., J.P.R., L.D.M., J.C.F., A.L.P. performed data analysis. N.P. helped with data analysis, provided relevant intellectual input, and edited the manuscript. A.V.Z., P.S.M.U. performed some experiments and provided relevant intellectual input. M.L.M., S.S., G.A., P.R.C. performed some experiments. M.W., S.J. procured human samples. E.M.L., V.L., J.T. reviewed and edited the manuscript. J.M.P.P., S.J., F.P., D.G.C. provided relevant intellectual input and edited the manuscript. F.P., A.R.V., D.G.C. obtained funding, and supervised the whole project. All authors approved the final manuscript.

Corresponding authors

Correspondence to Felipe Prósper, Adrián Ruiz-Villalba or David Gómez-Cabrero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41597_2025_6533_MOESM1_ESM.xlsx

Supplementary Excel file containing the lists of genes within Dynamic1 and Dynamic 2 determined by their roles in dynamic transcriptional shifts revealed by RNA velocity analysis and a ranking strategy.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, S.C., Ainciburu, M., Sudupe, L. et al. Single-cell and spatial transcriptomic profiling of cardiac fibroblasts following myocardial infarction. Sci Data (2026). https://doi.org/10.1038/s41597-025-06533-0

Download citation

  • Received: 21 July 2025

  • Accepted: 24 December 2025

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41597-025-06533-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research