Abstract
A molecular sexing method by polymerase chain reaction (PCR) amplification of a portion of the sex-determining region Y (SRY) and the zinc finger (ZF) gene, as well as six equine Y-chromosome-specific microsatellite markers, were tested in the Malayan tapir (Tapirus indicus). While the microsatellite markers did not yield any male-specific amplicons for sex-typing, the SRY/ZF marker system produced reliable molecular sexing results by accurately sex-typing 31 reference Malayan tapirs, using whole blood, dried blood spot (DBS), or tissue samples as materials for DNA extraction. The marker system was also tested on 16 faecal samples, and the results were in general consistent with the pre-determined sexes of the animals, despite some amplification failures. A preliminary estimation of wild Malayan tapir population sex ratio was estimated from the Wildlife Genomic Resource Bank (WGRB) database of the Malaysian Department of Wildlife and National Parks (PERHILITAN), zoos, and the Sungai Dusun Wildlife Conservation Centre (WCC), as well as from the results of molecular sexing 12 samples of unknown sex. The overall sex ratio favoured females, but the deviation from parity was statistically not significant when tested using the binomial test (pā>ā0.05), which may be due to reduced statistical power caused by small sample sizes.
Similar content being viewed by others
Introduction
Sex ratio, conventionally defined according to life-history stages such as pre-birth (e.g. sex ratio at fertilisation) or post-birth (e.g. sex ratio at birth, adult sex ratio), is used to describe a population1. The sex ratio at different stages of life is influenced by one or a set of sex-differential processes such as sex determination, survival, development, maturation, migration, mate competition, and parental investment2,3,4. One of the types, the adult sex ratio, is estimated by counting the number of males and females who have matured, regardless of whether they are sexually active or have produced offspring2.
Adult sex ratio can vary depending on species, for examples, in species with heterogametic males (e.g. mammals), the ratio tend to be female-biased, while in species with heterogametic females (e.g. birds), the ratio tends to be male-biased5. In mammals, at birth, the populations are expected to have a 1:1 ratio for male to female offspring because of the Mendelian mode of inheritance of sex chromosomesātheoretically half of the offspring would possess the XY genotype, thus developing into males; and if the cost to produce either sex is equal, parity in adult sex ratio is expected4,6. However, in reality, mammalian population sex ratios may vary with the costs and benefits of producing male and female offspring7.
The Malayan tapir (Tapirus indicus) is an endangered mammal species listed in the International Union for Conservation of Nature (IUCN) Red List8. This tapir species is the only Old-World species in the family Tapiridae and can be found in regions of Southeast Asia9. Its worldwide population is declining due to threats such as habitat loss and fragmentation, poaching, and accidental killings (e.g. road-kill)8,10,11,12,13. In Peninsular Malaysia where forests are becoming fragmented, there appears to be an increasing trend of displacementā92 tapirs were recorded to be road-killed from year 2006 to 201710,14. The tapir population in Peninsular Malaysia is estimated at 1,100ā1,500 individuals11, but the actual number could be lower; only 3ā5 tapirs were estimated to be present in an isolated forest during a survey in year 201015. This has raised concerns on the sustainability of the tapir populations in isolated habitats because endangered species with small population sizes have a higher risk of extinction due to the effects of anthropogenic16 or stochastic factors17 such as unsustainable population sex ratios.
The effects of demographic stochasticity and genetic drift, or other genetic factors (e.g. inbreeding depression, reduced genetic variability, accumulation of deleterious mutations) in small populations can affect the rate of reproduction and expansion in the populations and even lead to extinction when coupled with skewed sex ratios18,19. In the case of the Malayan tapirs, which are thought to be monogamous or facultative polygynous creatures, an increase in males led to a reduction in stochastic population growth rate in VORTEX (a simulation model for population viability analysis) under the assumption of a monogamous mating system20. Therefore, a male-biased sex ratio is an issue in the conservation and management of Malayan tapir populations.
Identifying wild populations with potentially deteriorating skewed sex ratio may help in conservation interventions (i.e. reintroduction or translocation of displaced tapirs from one forest to another) or in the formation of better management plans that address the immediate needs of the Malayan tapirs in isolated habitats. However, little is known about their sex ratio in wild populations. Malayan tapirs only exhibit minor sexual dimorphism in terms of sizeāfemales are larger than malesāwhich limits the use of photos and videos obtained from camera traps for sexing21. Besides, tapirs have a wide home range, are rare, and hard to capture, making direct observation difficult. As such, a genetic approach to determine the sex ratio of wild populations through non-invasive sampling methods (i.e. through hair, scat, faeces, etc.) presents an alternative method to traditional field observations or camera trapping for the purpose of measuring such population parameters22. To initiate such a study, a reliable sex marker would be needed.
Molecular sexing relies on genetic differences on the sex chromosomes. The two DNA regions commonly targeted for sexing of mammals are the sex-determining region Y (SRY) and the zinc finger (ZF) gene23,24,25. The SRY region is situated on the Y chromosome of males26; the ZF gene is situated on the X chromosome (ZFX) and the pseudo-autosomal region of the Y chromosome (ZFY), and so is present in both males and females27. Depending on the species and method used, the ZF gene may act as a sex-typing marker or as an internal positive control for polymerase chain reaction (PCR)28,29. The use of SRY as the main sex-typing marker and ZF as the positive control for PCR amplification success has been successfully demonstrated in the lowland tapir (Tapirus terrestris), where the presence of an SRY amplicon denotes a male25. Other Y-chromosome segments such as Y-linked microsatellite markers are also potential markers for sexing30,31.
In this study, primers for the universal SRY and ZF markers, and six Y-chromosome-specific microsatellite markers isolated from the horse (Equus caballus), were tested for amplification in the Malayan tapir in an attempt to obtain functional sex-typing markers for this species. A preliminary assessment on the Malayan tapir sex ratio in the wild was also carried out using data from the Wildlife Genomic Resource Bank (WGRB) database of the Malaysian Department of Wildlife and National Parks (PERHILITAN), zoos and conservation centres, as well as from the results of molecular sexing of Malayan tapir samples from the WGRB.
Results
Equine Y-chromosome-specific microsatellite markers
The six equine Y-chromosome-specific microsatellite markers were expected to be amplified in male tapirs alone. Nonetheless, all the markers were either not specific to males, or yielded unspecific products (Supplementary TableĀ S1). These markers were therefore excluded from further tests.
SRY and ZF nucleotide sequences
DNA sequencing revealed that the amplified lengths of SRY (accession no. MN786408) and ZFX (accession no. MN786409) were 224ābp and 447ābp respectively in the Malayan tapir. Comparisons of the SRY sequence against the National Center for Biotechnology Information (NCBI) nucleotide collection of Tapiridae (taxid: 9799) did not return any results, but matches to a partial SRY region of Equus spp. were returned when it was compared against Perissodactyla (taxid: 9787). Comparing the ZFX sequence against the Tapiridae nucleotide collection returned only partial sequences (48ābp) that overlapped with the T. indicus ZFX partial coding sequence (204ābp; accession no. AY012084.115).
Validation and characterisation of sex markers
In both singleplex and multiplex PCRs, male samples showed amplification of both SRY and ZFX/ZFY, while female samples only showed amplification of ZFX (Fig.Ā 1). Samples from 31 tapirs of known sex, or controls, were subjected to molecular sexing that were based on band pattern on agarose gel (Nā=ā13), peak size and pattern in fragment analysis (Nā=ā9), or both (Nā=ā9); and all (100%) were correctly sex-typed. Characterisation through fragment analysis revealed that the fragment lengths of ZFX/ZFY and SRY (inclusive of the 20ābp tail) were 464ābp and 244ābp, respectively, and were consistent in all the 18 samples characterised. The single amplicon size yielded for the ZF gene in both the male and female samples suggested that there was no length polymorphism between ZFX and ZFY genes.
Amplification of the sex-identification region Y (SRY) and zinc finger (ZF) genes in 22 Malayan tapir individuals. (a) Male tapirs yielded amplicons of SRY at ~200ābp and ZFX/ZFY at ~450ābp. Female tapirs yielded only amplicons of ZFX at ~450ābp. ZF gene acts as a positive control for the PCR. (b) Sex-identification in 11 females and 11 males by multiplexing the primers of SRY and ZF genes in PCR, and the products were visualised on 2% agarose gel. All males and females show consistent sex-specific banding patterns. L ā 50ābp ladder, N ā negative control, M ā male, F ā female. Both images (a,b) were cropped from the full-length gels presented in Fig. S1 in Supplementary Information.
Testing sex markers in faecal samples
Twenty-three faecal samples were used for testing the sex markers (Supplementary TableĀ S2). Seven faecal samples were excluded from the test due to inconsistent or unexpected sex-typing results (results not shown, but see Supplementary TableĀ S2 for details). Three PCR replicates were prepared for 15 faecal samples and one for S20 (due to insufficient DNA sample). Thirteen samples (81.25% of the 16 samples), which expected banding pattern was observed in at least one replicate (Fig.Ā 2), were correctly sex-typed. No amplification of SRY/ZF was obtained in all the three replicates of two of the samples. In one of the male samples, S9, only either SRY or ZF was amplified.
Amplification of the sex-identification region Y (SRY) and zinc finger (ZF) genes in 14 faecal samples from nine Malayan tapirs. L ā 100ābp ladder, N ā negative control, PF ā positive control (female), PM ā positive control (male), M ā male, F ā female. The image was cropped from the full-length gel presented in Fig. S2 in Supplementary information.
Sex-typing of 18 samples with unknown sex
Sex-typing of 18 tapir samples of unknown sex in the WGRB database succeeded at a rate of 66.7% (i.e. 12 out of 18 samples; TableĀ 1). Eight of the samples were successfully sex-typed based on the banding pattern on the agarose gel, and four samples were sex-typed by fragment analysis after producing ambiguous banding patterns on the agarose gel. The sex of a sample was accepted when at least two out of its three PCR replicates were consistent in the presence of the ZF amplicon. In the rest of the samples, which consisted of hair (nā=ā3), and tissues (nā=ā3) samples tested in fragment analysis, sex could not be determined due to inconsistent results across the three replicates, or the absence of amplification in one or both markers (Supplementary TableĀ S3). TAP18, which sex could not be determined through DNA extracted from its hair sample, had its sex recorded in the studbook and was therefore included in the sex ratio estimation.
Preliminary assessment of sex ratio
The proportion of males in a pool of wild and presumably wild tapirs (Nā=ā66) was 0.409 (27 males:39 females), and no significant deviation from a frequency of 0.5 was found in a two-tailed binomial test at a 95% confidence interval (pā=ā0.175). When looking at wild individuals only (Nā=ā47), the proportion of males was 0.362 (17 males:30 females), which also did not deviate significantly from parity (pā=ā0.0789).
Discussion
Sex-typing markers for the Malayan tapir
The sex-specific banding patterns of SRY and ZF were consistent with 100% accuracy across a total of 40 PCR reactions prepared from 31 Malayan tapir samples (nine of the samples were analysed by both agarose gel and fragment analyser, hence there were 22 PCR reactions analysed on the agarose gel and 18 on the fragment analyser). Thus, the markers are deemed reliable for sex-typing of the Malayan tapir. The negative control reaction did not yield any bands, so template contamination was unlikely. However, caution is needed to prevent human contamination since the selected primers can amplify the two DNA regions present in humans as well32,33.
After performing fragment analysis, the relative fragment lengths of the 18 control samples indicated that both SRY and ZF were conserved and monomorphic. The length of SRY was also reported as 224ābpāin another study34. Monomorphism in the Malayan tapir partial ZF gene (447ābp) is similar to the horse (445ābp), unlike humans, cattle, sheep, and goats, in which ZFY and ZFX are 447ābp and 445ābpāin length, respectively, when amplified using the same primer pairs32. It was noted that the sequence of P1-5EZ was āATA TTC ACA TGGā¦ā from position 1 to 12, which differed from GenBankās record of the T. indicus ZFX partial coding sequence, accession no. AY012084.115. The deposited sequence āACA CCC ACC TGGā¦ā is probably a more accurate sequence which has the same sequence as the human ZFX32.
Among the types of sample (i.e. whole blood, hair, tissue, faeces, and DBS35), DBS and whole blood was the easiest to sex-typeāamplification success of 100%. Failure of sex-typing in half of the hair and tissue samples may be due to DNA degradation after long-term storage (at least eight years at room temperature) under simple conditions. Due to limited information, only sample TAP72 was known to be liver tissue, while TAP38 and TAP39 were unknown tissues. It is highly likely that the DNA in these tissue samples had degraded, or contained PCR inhibitors such as bile36. The issue of PCR failure for one or both products of SRY and ZF due to DNA degradation is also seen in the faecal samples. Since the ZF fragment to be amplified is larger than the SRY fragment, it is expected that PCR failure due to DNA degradation would affect the ZF more readily than the SRY37. This is in line with our observation that SRY amplicons were often obtained in male samples that had ZF amplification failures (Supplementary TableĀ S2), even though two copies of ZF (on both the X- and Y-chromosomes) exist for every copy of SRY (on the Y-chromosome). As such, we think that the consistent presence of the SRY amplicon with or without amplification of ZF in PCR reactions may still be adequate for sex-typing a sample.
The success rate of sex-identifying the samples of unknown sex (12 successes in 18 tests, or 66.7%) was comparable to the rate (64.4%) reported in a previous study that used 49 lowland tapir scat samples25. However, the criteria for a successful sexing differed: in this study, consistent banding (on agarose gel) or peak patterns (on fragment analyser) from two out of three replicates were accepted for sex-typing, whereas consistency across all three replicates (on agarose gel) was required in the other study. Nevertheless, for samples that were successfully sex-identified through agarose gel banding patterns, the results were consistent in all three replicates for each of the samples.
For the faecal DNA samples, only eight out of 15 samples (that have three replicates each) were sex-typed based on the agarose gel banding patterns, if the same criteria were applied (Supplementary TableĀ S2). We believe this sexing method to be reliable for faecal samples as all were correctly sex-typed. Noteworthy here is that we experienced contamination issues when trying to amplify the faecal DNA; the seven discarded faecal samples were suspected of possible contamination from the faeces of other species or from other tapir individuals that might have happened due to handling errors before or during the collection of faeces samples, during DNA extraction, or during PCR preparation (see Supplementary TableĀ S2 and Supplementary Fig.Ā S2 for more descriptions). SRY may, possibly due to contamination, be amplified in female faecal samples (less than five observations among the replicates of non-discarded samples), but often the band was extremely or comparatively much lighter compared to the male samplesāwhich SRY and ZF bands should be more or less of equal brightness when visualised on agarose gel, as shown in Fig.Ā 2 and Supplementary Fig.Ā S2. In these cases, the samples were still identified as females and included in the results. Unfortunately, at the time of writing, the faecal samples were no longer available, and therefore we are not able to revalidate the results to address the contamination issues.
We recommend that future studies collect hair and faecal samples from wild and captive tapirs to further test the methodās robustness for non-invasive sexing38. In the context of the biodiversity and ecosystem of Peninsular Malaysia, Malayan tapir faeces are relatively easy to recognise via size and shape, so the risk of misidentifying tapir faeces is relatively low. Moreover, because the tapir is an herbivore, the issue of having another animalās DNA in its faeces due to food intake is almost non-existent.
Finally, the success of this method in sex-typing both the lowland tapir25 and the Malayan tapir suggests high chances of success for other tapir species and other closely-related species. The sexing method may also be useful for future applications such as wildlife forensics and embryo implant sexing after in vitro fertilisation.
Sex ratio estimation and the limitations
There has been a lack of studies on the sex ratio of Malayan tapir populations in Peninsular Malaysia. This study is the first sex ratio survey of Malayan tapir population in Peninsular Malaysia through data-mining of the WGRB Malayan tapir database and other tapir data provided by the Sungai Dusun Wildlife Conservation Centre (WCC) and zoos, and supplemented by molecular sexing tapirs of unknown sex. As shown by the binomial tests, we found no significant deviation from parity for the Malayan tapir sex ratio in Peninsular Malaysia, whether tapirs of unknown origin (but potentially sourced from the wild) were included or not. Lack of evidence for a skewed sex ratio, either in favour of males or females was also reported in a few studies of tapirs20,39,40. However, we acknowledge the possible contribution of small sample size to reduced statistical power.
The result of sex ratios obtained in this study is only preliminary due to: (1) a relatively small sample size (Nā=ā66), mostly collected around 2002ā2017; (2) missing or insufficient data (i.e. wild or captive-born, age, year caught, origin) and possible unidentified recaptures of individuals throughout the years without reliable means for individual identification; and (3) assumptions made on our samples in this study that could contribute to sampling bias as opposed to the assumption of random sampling, including:
-
(i)
The tapirs used in the sex ratio estimation were treated as one population of adult tapirs regardless of actual age structure. The tapir samples were mainly collected during tapir rescue and translocation operations after receiving complaints from the public10. Not all incidents of tapir encounters would be recorded in the WGRB database unless biological samples were taken followed by data entry. Relevant to this, records of tapirs through these opportunistic encounters are expected to be higher in areas with higher rates of wildlife road-kill, human plantations with tapir food sources, or disturbances.
-
(ii)
The possibility of bias in population sex ratio induced by sex-differences in behaviour, survival, and dispersal pattern that increased the probability of detecting one sex2 was not investigated in this study due to insufficient data. There is also a lack of studies on sex-specific philopatric behaviours in the Malayan tapir. In the lowland tapir, there was no evidence found to support such behaviour41. Female tapirs have a larger body size than male tapirs but whether the same is true for home range size requires more data42,43.
Methods
DNA extraction
Malayan tapir whole blood samples (nā=ā2) were collected from the National Zoo of Malaysia and Sungai Dusun WCC, PERHILITAN. Dried blood spots (DBS, nā=ā19), tissues (nā=ā22), and hair samples (nā=ā6) were obtained from the Wildlife Genomic Resource Bank (WGRB) of the National Wildlife Forensic Laboratory, PERHILITAN (permit ref. NRE 600-2/2/21 JILID 2(42)). In addition, we included 23 faecal samples collected from 11 tapirs on different dates in 2014 and 2015 at the National Zoo of Malaysia (nā=ā8) and Sungai Dusun (nā=ā15); see Supplementary TableĀ S2 for the detailed list of samples. The samples were stored in -20ā°C within two hours of collection. All the sampling procedures for the whole blood samples were approved by the Institutional Animal Care and Use Committee, Universiti Putra Malaysia (ethical approval ref.: UPM/IACUC/AUP-R033/2016). All methods were performed in accordance with the Universiti Putra Malaysia Code of Practice for the Care and Use of Animals for Scientific Purposes. Genomic DNA (gDNA) was extracted using the QIAampĀ® DNA Mini Kit (Qiagen, Germany) following the manufacturerās spin protocol for all the samples except the faeces, from which the gDNA was extracted using the E.Z.N.AĀ® Soil DNA Kit (Omega Bio-tek, USA). Of the 72 samples, 54 samples including 23 faecal samples with information on their sexes were used for marker testing, validation, and characterisation (see Supplementary TablesĀ S2āS4 for details), while the other 18 samples of unknown sex were sex-typed (TableĀ 1) to supplement sex ratio estimation.
Cross-amplification of Equus sp. Y-chromosome specific microsatellite markers
The six Y-specific microsatellite markers isolated from Equus sp., namely: Eca.YM2, Eca.YJ10, Eca.YH12, Eca.YE1, Eca.YP9 and Eca.YA1630, were tested for cross-amplification in four samples (2 males: 2 females). Singleplex PCR reactions were carried out in total volumes of 10āμL, each containing 1 Ć MyTaq Red Mix (Bioline, Germany), 10āng of gDNA, and 0.5, 0.8 or 1.0āμM of each primer. The PCR was run using touchdown protocols, which included an initial denaturation at 95ā°C for 1āmin followed by 35 cycles of denaturation at 95ā°C for 15ās, annealing at 59āāā49ā°C (Eca.YM2), 61āāā51ā°C (Eca.YJ10), 62āāā52ā°C (Eca.YH12 and Eca.YE1), 58āāā47ā°C (Eca.YP9), or 54āāā45ā°C (Eca.YA16) for 15ās (ā1ā°C per cycle), and extension at 72ā°C for 15ās, ending with a single cycle of final extension at 72ā°C for 3āmins.
PCR amplification and characterisation of SRY and ZF genes
The primers for the amplification of the ZF gene (P1-5EZ: 5ā²-ATA ATC ACA TGG AGA GCC ACA AGC T-3ā² and P2-3EZ: 5ā²-GCA CTT CTT TGG TAT CTG AGA AAG T-3ā²) and the SRY gene (Y53-3C: 5ā²-CCC ATG AAC GCA TTC ATT GTG TGG-3ā² and Y53-3D: 5ā²-ATT TTA GCC TTC CGA CGA GGT CGA TA-3ā²) were taken from published literature32,33. Singleplex PCR reactions were performed in 10āμL mixture containing 1 Ć MyTaq Red Mix, 0.5āμM of P1-5EZ/P2-3EZ or Y53-3C/3D primer mix, and 2āng of gDNA. The PCR was run using the touchdown profile: an initial denaturation at 95ā°C for 3āmins followed by 40 cycles of denaturation at 95ā°C for 20ās, annealing at 65āāā55 for 20ās (-1ā°C per cycle) and extension at 72ā°C for 20ās, and a final extension at 72ā°C for 7āmins. For sex-typing, both SRY and ZF gene amplicons were expected in male samples, while only ZF gene amplicons were expected in female samples. The amplicons of SRY and ZFX from a male and a female respectively, were cloned into pGEMĀ®-T Easy Vector (Promega, USA) following the manufacturerās instructions and then sequenced to verify the amplified loci. Sequencing was run in both directions. The sequences were then searched against NCBI database using the BLAST algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
The sex-typing primers were evaluated by PCR amplification in 22 samples (11 males: 11 females) consisting of tissue, whole blood, and DBS samples (Supplementary TableĀ S4). A negative control without DNA template was included. The conditions of the PCR reactions remained the same for SRY/ZF method, but primers were multiplexed at 0.4āμM of P1-5EZ/P2-3EZ and 0.5āμM Y53-3C/3D. All the amplicons were electrophoresed through 2% agarose gel stained with RedSafeTM Nucleic Acid Staining Solution (20āml gel: 1āμl staining solution), and the gel images were captured in an ENDUROTM GDS-1302 gel documentation system (Edison, NJ, USA).
Marker characterisation was carried out by modifying the primers using the method described by Vartia et al.44. The 5ā²-ends of P1-5EZ and Y53-3D were extended with the sequence of a third tail āNeomycin revā labelled with 6-FAM (5ā²6-FAM-AGG TGA GAT GAC AGG AGA TC-3ā²). The primer concentrations of the two markers were 0.4āμM for ZF and 0.5āμM for SRY. However, the ratio of the unmodified primer:tailed primer:Neomycin rev was adjusted to 4:1:4. PCRs were run using the same touchdown protocol for 18 samples (9 males:9 females), consisting of tissue, whole blood and DBS, that were chosen from different locations to look for possible length polymorphisms (Supplementary TableĀ S5). Fragment analysis was performed on an ABI Genetic Analyzer ABI3730XL (Applied Biosystems, USA) using LIZ500 as the size standard. The peaks were examined and scored in Peak Scanner v2.0 (Applied Biosystems, Carlsbad, CA).
Since faeces is one of the most common non-invasive sources of DNA collected for wildlife species, the molecular sexing method was also tested in 23 samples of tapir faecal DNA following the same PCR profile using the unmodified primer pairs. Three PCR replicates were prepared per sample for sex-typing and evaluation.
Sex-typing samples of unknown sex
The 18 samples without information on their sexes were sex-typed either on 2% agarose gel, or by fragment analysis following the respective conditions described above, and in three PCR replicates per sample (Supplementary S3). Fragment analysis, a more sensitive assay, was only employed if the initial results on agarose gel were doubted due to the low quality and quantity of DNA samples that resulted in smearing, and low or no amplification. Fragment analysis results were used as a reference for sexing. In either method, band or peak patterns obtained in at least two out of three replicates and within the premise of successful amplification of ZF gene were accepted for sex-typing.
Preliminary assessment of sex ratio
In this study, sex ratio is defined as the proportion of male, expressed as male/(maleā+āfemale), throughout the text and is denoted as a value between 0 (all females) and 1 (all males). For sex ratio estimation, tapir data was extracted from separate datasheets provided by National Wildlife Forensic Laboratory, PERHILITAN (WGRB Perissodactyla database), and Sungai Dusun WCC, PERHILITAN, and supplemented by information provided by National Zoo of Malaysia and Taiping Zoo. The WGRB database contained sex information of tapirs whose samples were collected and stored in the bank. The result of molecular sexing for samples with missing sex information described above were also used to supplement the dataset. Tapirs labelled as āwildā were tapirs encountered in the wild, including the rescued, translocated, trapped, and road-killed tapirs. Tapirs of unknown origin were those neither labelled as āwildā nor ācaptiveā. Potential replicate entries from the same individuals were identified and merged using one or multiple identifiers in combination, including name, reference number, studbook number, microchip identification number, and descriptions in the āremarksā column. Captive-born tapirs and tapirs without both information on their sexes and biological samples for sexing were omitted.
An overall estimation of sex ratio was calculated in wild tapirs pooled with samples of unknown origin but presumably wild (in total Nā=ā66, see Supplementary TableĀ S6), and in wild tapirs alone (Nā=ā47). Since sex, under normal conditions, has only two outcomes: male and female, the binomial test was used as the significant test for deviation from 1:1 ratio or a frequency of 0.5, carried out using the function binom.test in R.3.5.145 run in RStudio 1.1.44746.
Data availability
Data analysed during this study are included in this published article (and its Supplementary Information File).
References
Wilson, K. & Hardy, I. C. W. Statistical analysis of sex ratios: an introduction. In Sex ratios: concepts and research methods (ed. Hardy, I. C. W.) 46ā92 (Cambridge University Press, 2002).
Ancona, S., Dénes, F. V., Krüger, O., Székely, T. & Beissinger, S. R. Estimating adult sex ratios in nature. Philos. Trans. R. Soc. Lond. 372, 20160313 (2017).
Shyu, E. & Caswell, H. A demographic model for sex ratio evolution and the effects of sex-biased offspring costs. Ecol. Evol. 6, 1470ā1492 (2016).
Hamilton, W. D. Extraordinary Sex Ratios. Science 156, 477ā488 (1967).
Pipoly, I. et al. The genetic sex-determination system predicts adult sex ratios in tetrapods. Nature 527, 91ā94 (2015).
Fisher, R. A. The genetical theory of natural selection. (Clarendon Press, 1930).
Clutton-Brock, T. H. & Iason, G. R. Sex Ratio Variation in Mammals. Q. Rev. Biol. 61, 339ā374 (1986).
Traeholt, C. et al. Tapirus indicus. The IUCN Red List of Threatened Species 2016: e.T21472A45173636. http://www.iucnredlist.org/details/21472/0 (2016).
Cranbrook, Eof & Piper, P. J. Paleontology to policy: the Quaternary history of Southeast Asian tapirs (Tapiridae) in relation to large mammal species turnover, with a proposal for conservation of Malayan tapir by reintroduction to Borneo. Integr. Zool. 8, 95ā120 (2013).
Magintan, D., Traeholt, C. & Karuppanannan, K. V. Displacement of the Malayan Tapir (Tapirus indicus) in Peninsular Malaysia from 2006 to 2010. Tapir Conserv. 21, 13ā17 (2012).
Department of Wildlife and National Parks (PERHILITAN). Tapir Information Sheet. (2012).
Wilson Novarino. Population monitoring and conservation of Malayan tapir (Tapirus indicus) in Taratak Forest Reserve, Sumatra Indonesia. 25, https://www.rufford.org/files/2-18.07.06%20Detailed%20Final%20Report.pdf (2008).
Shwe, N. M. & Lynam, A. J. A preliminary investigation of the status and threats to Malayan tapir Tapirus indicus in the Taninthayi Nature Reserve, Myanmar. Tapir Conserv. 21, 18ā23 (2012).
Laporan Tahunan 2017. https://www.forestry.gov.my/images/Laporan_Tahunan/2017/Laporan_Tahunan_2017.pdf (2017).
Laporan Tahunan 2010. http://www.wildlife.gov.my/images/stories/penerbitan/laporan_tahunan/lt2010.pdf (2010).
Marealle, W. N., FossĆøy, F., Holmern, T., Stokke, B. G. & RĆøskaft, E. Does illegal hunting skew Serengeti wildlife sex ratios? Wildl. Biol. 16, 419ā429 (2010).
Gabriel, W. & Bürger, R. Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41, 44ā71 (1992).
Nomura, T. Effective size of populations with unequal sex ratio and variation in mating success. J. Anim. Breed. Genet. 119, 297ā310 (2002).
Wedekind, C. Managing population sex ratios in conservation practice: How and why? in Topics in Conservation Biology (ed. Povilitis, T.) (InTech, 2012).
Malay Tapir conservation workshop. Final Report. (IUCN/SSC Conservation Breeding Specialist Group, 2003).
PĆ©rez-Flores, J., CalmĆ©, S. & Reyna-Hurtado, R. Scoring Body Condition in Wild Bairdās Tapir (Tapirus bairdii) Using Camera Traps and Opportunistic Photographic Material. Trop. Conserv. Sci. 9, 194008291667612 (2016).
Vidya, T. N. C., Roshan Kumar, V., Arivazhagan, C. & Sukumar, R. Application of molecular sexing to free-ranging Asian elephant (Elephas maximus) populations in southern India. Curr. Sci. 85, 1074ā1077 (2003).
Xu, X., Wei, K., Zhang, W.-P., Lin, L. & Wang, X.-F. A novel method for sex determination of giant panda. Ann. Zool. Fenn. 44, 401ā404 (2007).
PagĆØs, M. et al. A system for sex determination from degraded DNA: a useful tool for palaeogenetics and conservation genetics of ursids. Conserv. Genet. 10, 897ā907 (2009).
Pelizzon, C., Carvalho, daS., Caballero, C. & Manoel Galetti, S. Junior, P. & Sanches, A. Sex identification of the extant mega mammal, the lowland tapir, Tapirus terrestris (Tapiridae, Mammalia), by means of molecular markers: new outlook for non-invasive samples. Conserv. Genet. Resour. 9, 17ā19 (2017).
Bryja, J. & KoneÄný, A. Fast sex identification in wild mammals using PCR amplification of the Sry gene. Folia Zool. -Praha- 52, 269ā274 (2003).
Palmer, M. S., Berta, P., Sinclair, A. H., Pym, B. & Goodfellow, P. N. Comparison of human ZFY and ZFX transcripts. Proc. Natl. Acad. Sci. USA 87, 1681ā1685 (1990).
Shaw, C. N., Wilson, P. J. & White, B. N. A reliable molecular method of gender determination for mammals. J. Mammal. 84, 123ā128 (2003).
Bidon, T. et al. A sensitive and specific multiplex PCR approach for sex identification of ursine and tremarctine bears suitable for non-invasive samples. Mol. Ecol. Resour. 13, 362ā368 (2013).
Wallner, B., Piumi, F., Brem, G., Müller, M. & Achmann, R. Isolation of Y chromosome-specific microsatellites in the horse and cross-species amplification in the genus. Equus. J. Hered. 95, 158ā164 (2004).
Kreutzmann, N., Brem, G. & Wallner, B. The domestic horse harbours Y-chromosomal microsatellite polymorphism only on two widely distributed male lineages. Anim. Genet. 45, 460ā460 (2014).
Aasen, E. & Medrano, J. F. Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Nat. Biotechnol. 8, 1279ā1281 (1990).
Gilson, A., Syvanen, M., Levine, D. & Banks, J. Deer gender determination by polymerase chain reaction: validation study and application to tissues, bloodstains and hair forensic samples from California. Calif. Fish Game 84, 159ā169 (1998).
Wasser, S. K., Houston, C. S., Koehler, G. M., Cadd, G. G. & Fain, S. R. Techniques for application of faecal DNA methods to field studies of Ursids. Mol. Ecol. 6, 1091ā1097 (1997).
Murphy, W. J. et al. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614ā618 (2001).
Abu Al-Soud, W., Ouis, I.-S., Li, D.-Q., Ljungh, Ć . & Wadstrƶm, T. Characterization of the PCR inhibitory effect of bile to optimize real-time PCR detection of Helicobacter species. FEMS Immunol. Med. Microbiol. 44, 177ā182 (2005).
Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples ā a case study on DNA in faeces. Front. Zool. 3, 11 (2006).
Stetz, J. B., Seitz, T. & Sawaya, M. A. Effects of exposure on genotyping success rates of hair samples from brown and American black bears. J. Fish Wildl. Manag. 6, 191ā198 (2015).
Montenegro, O. L. The behavior of lowland tapir (Tapirus terrestris) at a natural mineral lick in the Peruvian Amazon. (University of Florida, 1998).
Eduardo, J. N. Ecology and Conservation of Bairdās tapir in Mexico. Trop. Conserv. Sci. 2, 140ā158 (2009).
Pinho, G. M., GonƧalves da Silva, A., Hrbek, T., Venticinque, E. M. & Farias, I. P. Kinship and Social Behavior of Lowland Tapirs (Tapirus terrestris) in a Central Amazon Landscape. PLoS One 9, 1ā10 (2014).
Williams, K. D. Aspects of the ecology and behavior of the Malayan tapir (Tapirus indicus Dermarest) in the National Park of West Malaysia. (Michigan State University, 1978).
Abdul-Ghani, S. Home range size, density estimation and behaviour of Malayan tapirs (Tapirus indicus) at Krau Wildlife Reserve. (University of Science Malaysia, 2009).
Vartia, S. et al. Multiplexing with three-primer PCR for rapid and economical microsatellite validation. Hereditas 151, 43ā54 (2014).
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).
RStudio Team. RStudio: Integrated Development for R. (RStudio, Inc., 2015).
Acknowledgements
This project was supported by the Malaysian Ministry of Educationās Fundamental Research Grant Scheme (FRGS); project code: FRGS/1/2014/SG03/UPM/02/8); project vote no: 5524552, and the Malaysian Nature Society Tapir Project Grant awarded to Dr. Geetha Annavi. We would like to thank Dr. Donny Yawah (PERHILITAN), and Dr. Mat Naim Bin Haji Ramli and Dr. Kavitha Jayaseelan (National Zoo of Malaysia) for their assistance in collecting blood samples at the Sungai Dusun WCC and the National Zoo of Malaysia respectively. We also thank Mdm Noor Azleen binti Mohd Kulaimi (PERHILITAN) for aiding in the collection of tapir samples from the National Wildlife Forensic Laboratory, PERHILITAN. We would also like to thank the staff from PERHILITAN, National Zoo of Malaysia, Taiping Zoo, and Sungai Dusun WCC for providing the Malayan tapir sample datasheet. Assistance by Dr. Ramitha Amurugam, Angelia Sima Anak David Luncha and Kavindran Pillay A/L K. Arunasalam Pillay in faecal sample collections and the subsequent faecal DNA extractions is greatly appreciated.
Author information
Authors and Affiliations
Contributions
A.I., G.A., Q.L.L. and Y.L.T. conceived and designed the study. Q.L.L. performed all the molecular works, collected the data and performed the analysis except the parts involving Y-chromosome microsatellite markers, which was done by Y.L.T. alone. N.R. helped Q.L.L. in updating the Malayan tapir dataset for analysis. W.L.N., C.S.Y.Y., G.A., J.J.R.-R. and N.R. supervised the project. Q.L.L. wrote the first draft of the manuscript and prepared all figures. Q.L.L., W.L.N., C.S.Y.Y., G.A. and J.J.R.-R. contributed to the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherās note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the articleās Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the articleās Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lim, Q.L., Tan, Y.L., Ng, W.L. et al. Molecular sexing and preliminary assessment of population sex ratio of the endangered Malayan tapir (Tapirus indicus) in Peninsular Malaysia. Sci Rep 10, 3973 (2020). https://doi.org/10.1038/s41598-020-60552-y
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41598-020-60552-y




