Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Numerical simulations of blood flow in a stenosed artery using a multi-criteria decision-making Algorithm
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 December 2025

Numerical simulations of blood flow in a stenosed artery using a multi-criteria decision-making Algorithm

  • Muhammad Umar1,2,
  • Muhammad Zeeshan3,
  • Shazia Rafiq4,
  • Imran Siddique5,6,
  • Bushra Shakoor5 &
  • …
  • Abdullatif Saleh Ghallab7 

Scientific Reports , Article number:  (2025) Cite this article

  • 884 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational biology and bioinformatics
  • Engineering
  • Mathematics and computing

Abstract

The hemodynamic characteristics of blood flow through a stenosed artery are analyzed in this study. A two-dimensional computational model is developed to simulate the behavior of a hybrid micropolar-Casson fluid flow with a magnetic field perpendicular to the flow, which mimics blood flow. The findings provide valuable insights into the complex dynamics of blood flow in narrowed arteries and help identify effective strategies for managing stenosis-related hemodynamic conditions. To optimize parametric values, a well-known technique called TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution) is employed. TOPSIS enabled a systematic evaluation and ranking of the alternatives of parametric values from best to worst based on their similarity to the ideal solution. The values from derived rankings are graphically represented and validated, demonstrating that the rankings are robust and consistent. It is evident from the results that the Hartmann Number can be used to control the flow separation region. The wall shear stress has a direct relation with the Hartman number and Casson parameter. The heat transfer rate for the hybrid nano fluid escalates with increasing values of Hartman number, Darcy parameter, and Strouhal number. The outcomes of this research have potential implications for cardiovascular health and can aid in developing advanced diagnostic and therapeutic approaches for stenotic arterial diseases.

Similar content being viewed by others

Mathematical modeling of blood flow with copper and graphene nanoparticles in inclined stenotic arteries

Article Open access 09 August 2025

Investigating hybrid nanoparticles for drug delivery in multi-stenosed catheterized arteries under magnetic field effects

Article Open access 12 January 2024

Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls

Article Open access 13 December 2021

Data availability

All the data used is presented in the paper.

Abbreviations

y₁, y₂:

Lower/upper wall positions (m)

h₁, h₂:

Constriction heights (m)

u*, v*:

Velocities in x*, y* directions (m/s)

p*:

Pressure (Pa)

\(\uprho\) :

Density (kg/m³)

\(\upmu\) :

Dynamic viscosity (Pa·s)

\(\upmu\upbeta\) :

Plastic dynamic viscosity (Pa·s)

\(\upmu\)mf :

Effective dynamic viscosity (Pa·s)

K:

Vortex viscosity (Pa·s)

\(\upnu\) :

Kinematic viscosity (m²/s)

\(\upsigma\) :

Electrical conductivity (S/m)

cp:

Specific heat capacity (J/(kg·K))

D:

Mass diffusivity (m²/s)

j:

Micro-inertia density (kg·m²)

\(\upphi\) :

Solid volume fraction (Dimensionless)

\(\upbeta\) :

Casson parameter (Dimensionless)

K:

Micropolar parameter (Dimensionless)

M:

Hartmann number (Dimensionless)

Re:

Reynolds number (Dimensionless)

Da:

Darcy number (Dimensionless)

Sc:

Schmidt number (Dimensionless)

St:

Strouhal number (Dimensionless)

Nu:

Nusselt number (Dimensionless)

Sh:

Sherwood number (Dimensionless)

\(\uppi\) :

Deformation rate product (Pa·s)

N:

Micro-rotation velocity (s⁻¹)

\(\gamma\) :

Spin gradient velocity (m²/s)

\(\uppsi\) :

Stream function (m²/s)

\(\upomega\) :

Vorticity (s⁻¹)

References

  1. Goud, B. S., Reddy, Y. D. & Asogwa, K. K. Chemical reaction, Soret and dufour impacts on magnetohydrodynamic heat transfer Casson liquid over an exponentially permeable stretching surface with slip effects. Int. J. Mod. Phys. B. 37 (13), 2350124 (2023).

    Google Scholar 

  2. Shamshuddin, M. D., Asogwa, K. K. & Ferdows, M. J. N. H. T. Thermo-solutal migrating heat producing and radiative Casson NF flow via bidirectional stretching surface in the presence of bilateral reactions. Numer. Heat. Transf. Part. A: Appl. 85 (5), 719–738 (2024a).

    Google Scholar 

  3. Mehmood, Z., Mehmood, R. & Iqbal, Z. Numerical investigation of micropolar Casson liquid over a stretching sheet with internal heating. Commun. Theor. Phys. 67 (4), 443 (2017).

    Google Scholar 

  4. Ali, A., Umar, M., Bukhari, Z. & Abbas, Z. Pulsating flow of a micropolar-Casson liquid through a constricted channel influenced by a magnetic field and Darcian porous medium: A numerical study. Results Phys. 19, 103544 (2020).

    Google Scholar 

  5. Vaidya, H. et al. Combined effects of homogeneous and heterogeneous reactions on peristalsis of Ree-Eyring liquid: application in hemodynamic flow. Heat. Transf. 50, 2592–2609. https://doi.org/10.1002/htj.21995 (2021).

    Google Scholar 

  6. Prasad, K. V. et al. Peristaltic activity in blood flow of Casson nanoliquid with irreversibility aspects in vertical non-uniform channel. J. Indian Chem. Soc. 99 (8), 100617. https://doi.org/10.1016/j.jics.2022.100617 (2022).

    Google Scholar 

  7. Karmakar, P. & Das, S. A neural network approach to explore bioelectromagnetics aspects of blood circulation conveying tetra-hybrid nanoparticles and microbes in a ciliary artery with an endoscopy span. Eng. Appl. Artif. Intell. 133, 108298. https://doi.org/10.1016/j.engappai.2024.108298 (2024a).

    Google Scholar 

  8. Abbas, Z. & Rafiq, M. Y. Numerical simulation of thermal transportation with viscous dissipation for a peristaltic mechanism of micropolar-Casson liquid. Arab. J. Sci. Eng. 47 (7), 8709–8720 (2022).

    Google Scholar 

  9. Keshavarz Motamed, P., Abouali, H., Poudineh, M. & Maftoon, N. Experimental measurement and numerical modeling of deformation behavior of breast cancer cells passing through constricted microliquidic channels. Microsystems Nanoengineering. 10 (1), 7 (2024).

    Google Scholar 

  10. Prastowo, T., Fahmi, M. N. & Realita, A. Transport of water masses through a constricted channel with a sill: possible application to Indonesian through-Flow. Ocean. Sci. J. 59 (4), 52 (2024).

    Google Scholar 

  11. Upreti, H., Pandey, A. K., Kumar, M. & Makinde, O. D. Darcy–Forchheimer flow of CNTs-H₂O nanofluid over a porous stretchable surface with Xue model. Int. J. Mod. Phys. B. *37* (28), 2350243. https://doi.org/10.1142/S0217979223502435 (2023).

    Google Scholar 

  12. Upreti, H., Mishra, S. R., Pandey, A. K. & Pattnaik, P. K. Thermodynamics analysis of Casson hybrid nanofluid flow over a porous Riga plate with slip effect. Int. J. Multiscale Comput. Eng. https://doi.org/10.1615/IntJMultCompEng.2024051153 (2024).

    Google Scholar 

  13. Upreti, H., Pandey, A. K., Lingwal, S. & Bartwal, P. Free convective flow of Casson hybrid nanofluid around a horizontal circular cylinder with thermal radiation using differential transformation method. Multidiscipline Model. Mater. Struct. https://doi.org/10.1108/MMMS-02-2025-0050 (2025).

    Google Scholar 

  14. Bartwal, P., Joshi, B. P., Upreti, H., Pandey, A. K. & Tripathi, D. 20 Magnetohydrodynamics stagnation point flow of tangent hyperbolic fluid over a non-flat rotating disk in intuitionistic fuzzy environment. Journal Ocean. Eng. Science (2025).

  15. Sarkar, J., Ghosh, P. & Adil, A. A review on HNF: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015).

    Google Scholar 

  16. Siddiqui, F. R., Tso, C. Y., Qiu, H., Chao, C. Y. & Fu, S. C. HNF spray cooling performance and its residue surface effects: toward thermal management of high heat flux devices. Appl. Therm. Eng. 211, 118454 (2022).

    Google Scholar 

  17. Zeeshan, A., Ellahi, R., Rafique, M. A., Sait, S. M. & Shehzad, N. Parametric optimization of entropy generation in HNF in contracting/expanding channel by means of analysis of variance and response surface methodology. Inventions 9 (5), 92 (2024).

    Google Scholar 

  18. Hassan, A. et al. Heat transport investigation of HNF (Ag-CuO) porous medium flow: under magnetic field and Rosseland radiation. Ain Shams Eng. J. 13 (5), 101667 (2022).

    Google Scholar 

  19. Raza, J., Mebarek-Oudina, F., Ali, H. & Sarris, I. E. Slip effects on Casson nanofluid over a stretching sheet with activation energy: RSM analysis. Front. Heat. Mass. Transf. 22 (4), 1017–1041. https://doi.org/10.32604/fhmt.2024.052749 (2024).

    Google Scholar 

  20. Li, S. et al. Peristaltic transport of a Ree‐Eyring fluid with non‐uniform complaint channel: an analysis through varying conditions. ZAMM ‐ J. Appl. Math. Mech. / Z. Für Angewandte Math. Und Mechanik. 104 (2). https://doi.org/10.1002/zamm.202300073 (2023).

  21. Mebarek-Oudina, F. et al. Thermal performance of MgO-SWCNT/water hybrid nanofluids in a zigzag walled cavity with differently shaped Obstacles. Mod. Phys. Lett. B. https://doi.org/10.1142/s0217984925501635 (2025).

    Google Scholar 

  22. Karmakar, P., Ali, A. & Das, S. Circulation of blood loaded with trihybrid nanoparticles via electro-osmotic pumping in an eccentric endoscopic arterial Canal. Int. Commun. Heat Mass Transfer. 141, 106593. https://doi.org/10.1016/j.icheatmasstransfer.2022.106593 (2022b).

    Google Scholar 

  23. Karmakar, P., Barman, A. & Das, S. EDL transport of blood-infusing tetra-hybrid nano-additives through a cilia-layered endoscopic arterial path. Mater. Today Commun. 36, 106772. https://doi.org/10.1016/j.mtcomm.2023.106772 (2023a).

    Google Scholar 

  24. Karmakar, P. & Das, S. Modeling non-Newtonian magnetized blood circulation with tri-nanoadditives in a charged artery. J. Comput. Sci. 70, 102031. https://doi.org/10.1016/j.jocs.2023.102031 (2023b).

    Google Scholar 

  25. Karmakar, P. & Das, S. Electro-Blood circulation fusing gold and alumina nanoparticles in a diverging fatty artery. BioNanoScience 13 (2), 541–563. https://doi.org/10.1007/s12668-023-01098-x (2023a).

    Google Scholar 

  26. Karmakar, P. & Das, S. EDL induced electro-magnetized modified hybrid nano-blood circulation in an endoscopic fatty charged arterial indented tract. Cardiovasc. Eng. Technol. 15 (2), 171–198. https://doi.org/10.1007/s13239-023-00705-y (2023c).

    Google Scholar 

  27. Das, S., Karmakar, P. & Ali, A. Electrothermal blood streaming conveying hybridized nanoparticles in a non-uniform endoscopic conduit. Med. Biol. Eng. Comput. 60 (11), 3125–3151 (2022).

    Google Scholar 

  28. Das, S., Karmakar, P. & Ali, A. Simulation for bloodstream conveying bi-nanoparticles in an endoscopic Canal with blood clot under intense electromagnetic force. Waves Random Complex. Media. 1–38. https://doi.org/10.1080/17455030.2023.2198036 (2023).

  29. Karmakar, P., Das, S. & Das, S. AI-based prediction of flow dynamics of blood blended with gold and maghemite nanoparticles in an electromagnetic microchannel under abruptly changes in pressure gradient. Electromagn. Biol. Med. 1–31. https://doi.org/10.1080/15368378.2025.2501733 (2025).

  30. Karmakar, P., Das, S., Das, S. & Das, S. Neuro-computational simulation of blood flow loaded with gold and maghemite nanoparticles inside an electromagnetic microchannel under rapid and unexpected change in pressure gradient. Electromagn. Biol. Med. 1–36. https://doi.org/10.1080/15368378.2025.2453923 (2025).

  31. Karmakar, P. & Das, S. AI-powered computational analysis of dynamic responses in a vibrating Riga sensor within a reactive platinum -cerium oxide-water mixture. Sens. Actuators Phys. 381, 116028. https://doi.org/10.1016/j.sna.2024.116028 (2024b).

    Google Scholar 

  32. Abdollahi, S. A. et al. A novel insight into the design of perforated-finned heat sinks based on a hybrid procedure: computational liquid dynamics, machine learning, multi-objective optimization, and multi-criteria decision-making. Int. Commun. Heat Mass Transfer. 155, 107535 (2024).

    Google Scholar 

  33. Dwivedi, P. P. & Sharma, D. K. A study for an optimization of cutting liquids in machining operations by TOPSIS and Shannon entropy methods. WSEAS Trans. Liquid Mech. 19, 83–98 (2024).

    Google Scholar 

  34. Ali, A., Bukhari, Z., Umar, M. & Abbas, Z. Cu and Cu-SWCNT nanoparticles’ suspension in pulsatile Casson fluid flow via Darcy–Forchheimer porous channel with compliant walls: A prospective model for blood flow in stenosed arteries. Int. J. Mol. Sci. 22 (12), 6494. https://doi.org/10.3390/ijms22126494 (2021).

    Google Scholar 

  35. Swain, K., Mebarek-Oudina, F. & Abo-Dahab, S. M. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim. 143 (2), 1155–1163. https://doi.org/10.1007/s10973-020-10432-4 (2021).

    Google Scholar 

  36. Ali, A., Fatima, A., Bukhari, Z., Farooq, H. & Abbas, Z. Numerical investigation of thermally developed MHD flow with pulsation in a channel with multiple constrictions. AIP Adv. 11 (5), 055320. https://doi.org/10.1063/5.0052276 (2021a).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany

    Muhammad Umar

  2. FMH-Institute of Allied Health Sciences, Lahore, Pakistan

    Muhammad Umar

  3. Multan University of Science & Technology, Multan, Pakistan

    Muhammad Zeeshan

  4. NUR International University, Lahore, Pakistan

    Shazia Rafiq

  5. Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistan

    Imran Siddique & Bushra Shakoor

  6. Mathematics in Applied Sciences and Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, 64001, Iraq

    Imran Siddique

  7. Department of Computer Science, University of Science and Technology, P.O. Box: 13064, Sana‘a, Yemen

    Abdullatif Saleh Ghallab

Authors
  1. Muhammad Umar
    View author publications

    Search author on:PubMed Google Scholar

  2. Muhammad Zeeshan
    View author publications

    Search author on:PubMed Google Scholar

  3. Shazia Rafiq
    View author publications

    Search author on:PubMed Google Scholar

  4. Imran Siddique
    View author publications

    Search author on:PubMed Google Scholar

  5. Bushra Shakoor
    View author publications

    Search author on:PubMed Google Scholar

  6. Abdullatif Saleh Ghallab
    View author publications

    Search author on:PubMed Google Scholar

Contributions

All authors have equal contributions.

Corresponding author

Correspondence to Abdullatif Saleh Ghallab.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, M., Zeeshan, M., Rafiq, S. et al. Numerical simulations of blood flow in a stenosed artery using a multi-criteria decision-making Algorithm. Sci Rep (2025). https://doi.org/10.1038/s41598-025-31493-1

Download citation

  • Received: 28 June 2025

  • Accepted: 03 December 2025

  • Published: 12 December 2025

  • DOI: https://doi.org/10.1038/s41598-025-31493-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Micropolar-Casson liquid
  • Double constricted channel
  • Hybrid nanoparticles
  • TOPSIS
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics