Table 6 Multi-logit model estimation of change in the frequency and severity of drought in the last 10 years and 10 years ago.

From: Ethnic diversity and divergent perceptions of climate change: a case study in Southwest China

Variables

 

Change in frequency

Change in severity

Less frequent

More frequent

New occurrence

Less severe

More severe

New occurrence

frequency

41 (16.3%)

109 (43.4%)

40 (15.9%)

35(13.9%)

130 (51.8%)

40 (15.9%)

intercept

−4.470 (0.201)

2.173 (0.251)

−1.264 (0.571)

−0.138 (0.910)

0.753 (0.458)

−1.514 (0.209)

distance

−0.017 (0.139)

−0.023 (0.026*)

−0.005 (0.624)

−0.013 (0.217)

−0.019 (0.036*)

0.000 (0.971)

age

−0.011 (0.553)

0.035 (0.018*)

0.018 (0.291)

0.001 (0.949)

0.031 (0.028*)

0.027 (0.102)

rateCultivated

−0.531 (0.506)

0.643 (0.356)

−1.018 (0.164)

   

rateIrrigable

4.284 (0.182)

−3.833 (0.015*)

0.410 (0.819)

0.002 (0.998)

−0.834 (0.123)

−0.788 (0.225)

rateRainfed

5.035 (0.120)

−2.238 (0.159)

1.609 (0.385)

   

incomeAgri

   

1.523 (0.106)

1.210 (0.126)

1.663 (0.066)

incomeLS

1.554 (0.212)

−0.020 (0.985)

0.296 (0.792)

   

incomeFR

3.768 (0.137)

−11.772 (0.130)

2.496 (0.319)

1.235 (0.546)

−14.384 (0.083)

1.668 (0.409)

incomeNMH

4.910 (0.165)

−3.306 (0.559)

−11.823 (0.356)

   

incomeMH

1.957 (0.104)

−1.405 (0.218)

−1.092 (0.378)

   

incomeMjob

2.076 (0.036*)

0.687 (0.380)

−0.456 (0.641)

   

incomeSalaried

0.396 (0.791)

1.441 (0.206)

1.592 (0.192)

1.208 (0.435)

2.430 (0.065)

3.075 (0.029*)

incomeTourism

−3.624 (0.212)

−2.065 (0.105)

−1.019 (0.473)

   

incomeObusiness

−0.927 (0.477)

−0.660 (0.493)

−2.020 (0.121)

   

Gender

female

0.685 (0.153)

−0.045 (0.911)

0.264 (0.567)

   

male (base)

0

0

0

   

Ethnicity

Bai

−0.170 (0.908)

0.722 (0.584)

0.973 (0.500)

15.293 (0.994)

16.048 (0.993)

16.363 (0.993)

Dulong

−1.790 (1.000)

13.742 (0.998)

−1.205 (1.000)

−0.096 (0.673)

16.284 (0.998)

0.236 (1.000)

Han

0.674 (0.499)

0.986 (0.230)

0.531 (0.594)

0.195 (0.824)

0.311 (0.648)

0.233 (0.783)

Lisu

−1.905 (0.026*)

−0.322 (0.658)

−0.761 (0.359)

−0.488 (0.543)

−0.198 (0.758)

0.163 (0.831)

Naxi

−0.161 (0.830)

0.192 (0.786)

0.251 (0.717)

0.356 (0.613)

−0.120 (0.847)

0.441 (0.514)

Nu

−17.698 (0.994)

−2.586 (0.060)

−1.511 (0.301)

−17.871 (0.997)

−2.365 (0.042*)

−1.048 (0.459)

Yi

−35.760 (0.994)

−33.712 (0.996)

−34.935 (0.889)

−0.517 (0.973)

15.708 (0.998)

−0.733 (1.000)

Tibetan (base)

0

0

0

0

0

0

Education

junior school

0.926 (0.090)

0.896 (0.041*)

0.949 (0.072)

   

above college

0.649 (1.000)

14.743 (0.997)

0.067 (1.000)

   

high school

16.444 (0.989)

15.427 (0.989)

15.599 (0.989)

   

illiteracy

0.825 (0.303)

1.110 (0.111)

1.041 (0.169)

   

primary school (base)

0

0

0

   
 

Likelihood ratio test: Chi-Square = 142.129; df = 75; p = 0.000. Pseudo R2: Cox & Snell = 0.435; Nagelkerke = 0.470; McFadden = 0.221.

Likelihood ratio test: Chi-Square = 67.181; df = 39; p = 0.003. Pseudo R2: Cox & Snell = 0.236; Nagelkerke = 0.259; McFadden = 0.111.

  1. Notes: Number of obs. = 251. The reference category is: no change. ***, **, and * indicate statistical significance at the 0.001, 0.01 and 0.05 level, respectively.