Table 8 Multi-logit model estimation of change in the frequency and severity of erratic rainfall in the last 10 years and 10 years ago.

From: Ethnic diversity and divergent perceptions of climate change: a case study in Southwest China

Variables

 

Change in frequency

Change in severity

Less frequent

More frequent

New occurrence

Less severe

More severe

New occurrence

frequency

15 (18.5%)

31 (38.3%)

14 (17.3%)

14 (17.3%)

31 (38.3%)

14 (17.3%)

intercept

1.285 (0.868)

8.407 (0.013**)

6.744 (0.086)

3.173 (0.496)

6.872 (0.081)

0.680 (0.883)

distance

−0.031 (0.280)

−0.047 (0.020*)

−0.024 (0.328)

   

age

−0.095 (0.060)

−0.023 (0.469)

−0.075 (0.068)

−0.005 (0.874)

−0.021 (0.550)

−0.055 (0.232)

rateCultivated

16.415 (0.015*)

−1.074 (0.512)

−3.321 (0.152)

−3.668 (0.180)

−7.162 (0.008**)

−7.683 (0.016*)

rateIrrigable

−9.760 (0.145)

−2.927 (0.306)

0.308 (0.930)

1.480 (0.747)

2.789 (0.485)

5.560 (0.236)

rateRainfed

−7.737 (0.254)

−3.185 (0.240)

0.957 (0.780)

2.044 (0.656)

2.525 (0.519)

6.136 (0.180)

incomeAgri

1.438 (0.657)

−0.950 (0.697)

1.643 (0.515)

0.394 (0.888)

−3.527 (0.176)

4.171 (0.220)

incomeLS

−2.731 (0.385)

−0.383 (0.870)

−7.551 (0.082)

−5.203 (0.162)

−0.437 (0.869)

−8.999 (0.116)

incomeFR

−14.176 (0.272)

−0.630 (0.874)

−0.505 (0.900)

−6.347 (0.360)

−1.262 (0.743)

−3.577 (0.492)

incomeMH

   

−743.009 (0.557)

−1299.192 (0.877)

5.922 (0.172)

incomeMjob

−0.847 (0.755)

−2.241 (0.266)

−2.217 (0.303)

−2.351 (0.338)

−2.872 (0.183)

0.749 (0.790)

incomeSalaried

−108.686 (0.978)

−1.945 (0.414)

−5.638 (0.114)

−4.286 (0.157)

−9.194 (0.041*)

−9.255 (0.071)

incomeObusiness

4.290 (0.241)

−0.006 (0.998)

−4.427 (0.146)

−0.949 (0.713)

−2.510 (0.307)

−4.412 (0.241)

Ethnicity

Bai

−0.895 (0.778)

0.126 (0.949)

0.190 (0.935)

−0.629 (0.768)

−0.940 (0.669)

−0.643 (0.775)

Dulong

3.965 (0.928)

−2.356 (1.000)

14.447 (0.999)

−4.546 (0.948)

−3.179 (1.000)

13.775 (0.999)

Han

−17.719 (0.993)

0.668 (0.733)

5.427 (0.039*)

−14.382 (0.994)

0.765 (0.694)

6.937 (0.026*)

Lisu

−3.338 (0.111)

−2.012 (0.140)

−0.829 (0.621)

−0.876 (0.537)

−0.097 (0.932)

1.241 (0.465)

Naxi

−1.061 (0.618)

0.172 (0.902)

1.054 (0.519)

1.207 (0.439)

0.661 (0.619)

0.286 (0.850)

Yi

−4.219 (1.000)

15.267 (0.998)

0.881 (1.000)

2.100 (1.000)

16.899 (0.998)

3.152 (1.000)

Tibetan(base)

0

0

0

0

0

0

Education

Junior school

−0.915 (0.502)

−0.112 (0.911)

1.645 (0.211)

−0.089 (0.935)

0.277 (0.793)

3.022 (0.053*)

Above college

−21.754 (0.969)

−16.820 (0.998)

−17.331 (0.999)

−16.619 (0.999)

−16.298 (0.998)

−17.204 (0.998)

High school

−16.748 (0.994)

0.116 (0.944)

2.132 (0.306)

−15.762 (0.994)

0.209 (0.894)

3.139 (0.175)

Illiteracy

−4.123 (0.114)

0.192 (0.877)

−0.507 (0.771)

1.530 (0.366)

2.358 (0.150)

−0.078 (0.973)

Primary school(base)

0

0

0

0

0

0

 

Likelihood ratio test: Chi-Square = 81.653; df = 63; p = 0.057. Pseudo R2: Cox & Snell = 0.640; Nagelkerke = 0.687; McFadden = 0.380.

Likelihood ratio test: Chi-Square = 84.597; df = 63; p = 0.036. Pseudo R2: Cox & Snell = 0.653; Nagelkerke = 0.701; McFadden = 0.396.

  1. Notes: Number of obs. = 81. The reference category is: no change. ***, **, and * indicate statistical significance at the 0.001, 0.01 and 0.05 level, respectively.