Table 3 Eigenvalues of the Jacobi matrix.
Equilibrium points | Eigen value | ||
|---|---|---|---|
λ1 | λ2 | λ3 | |
\({E}_{1}\left(\mathrm{0,0,0}\right)\) | \({\gamma C}_{f}-{C}_{f}\) | \(F-{C}_{g}-{R}_{v}\) | \({C}_{v2}-{C}_{v1}-D+{E}_{v1}-{E}_{v2}+\varepsilon {C}_{v1}\) |
\({E}_{2}\left(\mathrm{1,0,0}\right)\) | \(F-{C}_{f}+{\gamma C}_{f}\) | \({C}_{g}-F+{R}_{v}\) | \({C}_{v2}-{C}_{v1}-D+{E}_{v1}-{E}_{v2}+\varepsilon {C}_{v1}\) |
\({E}_{3}\left(\mathrm{0,1,0}\right)\) | \({C}_{f}-{\gamma C}_{f}\) | \(-{C}_{g}-{R}_{v}\) | \({C}_{v2}-{C}_{v1}-D+{E}_{v1}-{E}_{v2}+\varepsilon {C}_{v1}\) |
\({E}_{4}\left(\mathrm{0,0,1}\right)\) | \(\Delta {E}_{f}-{C}_{f}+{\gamma C}_{f}\) | \({E}_{g}-{C}_{g}+F\) | \({C}_{v1}-{C}_{v2}+D-{E}_{v1}+{E}_{v2}-\varepsilon {C}_{v1}\) |
\({E}_{5}\left(\mathrm{1,1,0}\right)\) | \({C}_{g}+{R}_{v}\) | \({C}_{f}-F-{\gamma C}_{f}\) | \({C}_{v2}-{C}_{v1}+{E}_{v1}-{E}_{v2}-{R}_{v}+\varepsilon {C}_{v1}\) |
\({E}_{6}\left(\mathrm{1,0,1}\right)\) | \({C}_{g}-{E}_{g}-F\) | \(\Delta {E}_{f}-{C}_{f}+F+{\gamma C}_{f}\) | \({C}_{v1}-{C}_{v2}+D-{E}_{v1}+{E}_{v2}+{R}_{v}-\varepsilon {C}_{v1}\) |
\({E}_{7}\left(\mathrm{0,1,1}\right)\) | \({E}_{g}-{C}_{g}\) | \({C}_{f}-\Delta {E}_{f}-{\gamma C}_{f}\) | \({C}_{v1}-{C}_{v2}+D-{E}_{v1}+{E}_{v2}-\varepsilon {C}_{v1}\) |
\({E}_{8}\left(\mathrm{1,1,1}\right)\) | \({C}_{g}-{E}_{g}\) | \({C}_{f}-\Delta {E}_{f}-F-{\gamma C}_{f}\) | \({C}_{v1}-{C}_{v2}-{E}_{v1}+{E}_{v2}+{R}_{v}-\varepsilon {C}_{v1}\) |
\({E}_{9}(1,{y}_{1},{z}_{1})\) | \({a}_{1}\) | \({\lambda }_{2}^{1}=-{\lambda }_{3}^{1}\) | \({\lambda }_{3}^{1}=-{\lambda }_{2}^{1}\) |
\({E}_{10}({x}_{2},1,{z}_{2})\) | \({a}_{2}\) | \({\lambda }_{2}^{2}=-{\lambda }_{3}^{2}\) | \({\lambda }_{3}^{2}=-{\lambda }_{2}^{2}\) |
\({E}_{11}({x}_{3},{y}_{3},0)\) | \({\lambda }_{1}^{3}=-{\lambda }_{2}^{3}\) | \({\lambda }_{2}^{3}=-{\lambda }_{1}^{3}\) | \({a}_{3}\) |
\({E}_{12}({x}_{4},0,{z}_{4})\) | \({a}_{4}\) | \({\lambda }_{2}^{4}=-{\lambda }_{3}^{4}\) | \({\lambda }_{3}^{4}=-{\lambda }_{2}^{4}\) |
\({E}_{13}({x}_{5},{y}_{5},1)\) | \({a}_{5}\) | \({\lambda }_{2}^{5}=-{\lambda }_{3}^{5}\) | \({\lambda }_{3}^{5}=-{\lambda }_{2}^{5}\) |