Table 3 Eigenvalues of the Jacobi matrix.

From: Evolutionary game model and simulation analysis of multi-stakeholder behaviour for promoting Braille labelling on pharmaceutical packaging in China’s legal framework

Equilibrium points

Eigen value

λ1

λ2

λ3

\({E}_{1}\left(\mathrm{0,0,0}\right)\)

\({\gamma C}_{f}-{C}_{f}\)

\(F-{C}_{g}-{R}_{v}\)

\({C}_{v2}-{C}_{v1}-D+{E}_{v1}-{E}_{v2}+\varepsilon {C}_{v1}\)

\({E}_{2}\left(\mathrm{1,0,0}\right)\)

\(F-{C}_{f}+{\gamma C}_{f}\)

\({C}_{g}-F+{R}_{v}\)

\({C}_{v2}-{C}_{v1}-D+{E}_{v1}-{E}_{v2}+\varepsilon {C}_{v1}\)

\({E}_{3}\left(\mathrm{0,1,0}\right)\)

\({C}_{f}-{\gamma C}_{f}\)

\(-{C}_{g}-{R}_{v}\)

\({C}_{v2}-{C}_{v1}-D+{E}_{v1}-{E}_{v2}+\varepsilon {C}_{v1}\)

\({E}_{4}\left(\mathrm{0,0,1}\right)\)

\(\Delta {E}_{f}-{C}_{f}+{\gamma C}_{f}\)

\({E}_{g}-{C}_{g}+F\)

\({C}_{v1}-{C}_{v2}+D-{E}_{v1}+{E}_{v2}-\varepsilon {C}_{v1}\)

\({E}_{5}\left(\mathrm{1,1,0}\right)\)

\({C}_{g}+{R}_{v}\)

\({C}_{f}-F-{\gamma C}_{f}\)

\({C}_{v2}-{C}_{v1}+{E}_{v1}-{E}_{v2}-{R}_{v}+\varepsilon {C}_{v1}\)

\({E}_{6}\left(\mathrm{1,0,1}\right)\)

\({C}_{g}-{E}_{g}-F\)

\(\Delta {E}_{f}-{C}_{f}+F+{\gamma C}_{f}\)

\({C}_{v1}-{C}_{v2}+D-{E}_{v1}+{E}_{v2}+{R}_{v}-\varepsilon {C}_{v1}\)

\({E}_{7}\left(\mathrm{0,1,1}\right)\)

\({E}_{g}-{C}_{g}\)

\({C}_{f}-\Delta {E}_{f}-{\gamma C}_{f}\)

\({C}_{v1}-{C}_{v2}+D-{E}_{v1}+{E}_{v2}-\varepsilon {C}_{v1}\)

\({E}_{8}\left(\mathrm{1,1,1}\right)\)

\({C}_{g}-{E}_{g}\)

\({C}_{f}-\Delta {E}_{f}-F-{\gamma C}_{f}\)

\({C}_{v1}-{C}_{v2}-{E}_{v1}+{E}_{v2}+{R}_{v}-\varepsilon {C}_{v1}\)

\({E}_{9}(1,{y}_{1},{z}_{1})\)

\({a}_{1}\)

\({\lambda }_{2}^{1}=-{\lambda }_{3}^{1}\)

\({\lambda }_{3}^{1}=-{\lambda }_{2}^{1}\)

\({E}_{10}({x}_{2},1,{z}_{2})\)

\({a}_{2}\)

\({\lambda }_{2}^{2}=-{\lambda }_{3}^{2}\)

\({\lambda }_{3}^{2}=-{\lambda }_{2}^{2}\)

\({E}_{11}({x}_{3},{y}_{3},0)\)

\({\lambda }_{1}^{3}=-{\lambda }_{2}^{3}\)

\({\lambda }_{2}^{3}=-{\lambda }_{1}^{3}\)

\({a}_{3}\)

\({E}_{12}({x}_{4},0,{z}_{4})\)

\({a}_{4}\)

\({\lambda }_{2}^{4}=-{\lambda }_{3}^{4}\)

\({\lambda }_{3}^{4}=-{\lambda }_{2}^{4}\)

\({E}_{13}({x}_{5},{y}_{5},1)\)

\({a}_{5}\)

\({\lambda }_{2}^{5}=-{\lambda }_{3}^{5}\)

\({\lambda }_{3}^{5}=-{\lambda }_{2}^{5}\)