Table 1 Relevant parameters and variables.

From: Hierarchical optimal configuration model and algorithm for counterterrorism resource allocation

parameters

 

\(i\)

city node index, \(i=1,\cdots ,I\).

\(j\)

alternative counterterrorism facility node index, \(j=1,\cdots ,J\).

\(j\left(i,k\right)\)

the nearest facility \(j\) providing class \(k\) resources for city \(i\).

\(h,k\)

type, level index, \(h,k=1,\cdots ,H\).

\(\alpha\)

the delay loss of resource transfer per unit distance and type.

\(\gamma\)

the benefit per unit distance and type.

\(B\)

total budget limitation.

\({w}_{i}\)

demand of city i after the attack.

\({\eta }_{i}\)

the negative impact caused by the attacking unit demand.

\({{\rm{C}}}_{h}\)

cost of h-level facility.

\({\delta }_{i}\)

the benefit obtained by attacking unit demand.

\({d}_{{ij}}\)

distance from city i to facility \(j\).

\(M1\)

a sufficiently large constant.

\(d\left(i,j\left(i,k\right)\right)\)

distance from city i to facility \(j\left(i,k\right)\); if \({y}_{{ijk}}=1\), then \(d\left(i,j\left(i,k\right)\right)={d}_{{ij}}\), and otherwise, \(d\left(i,j\left(i,k\right)\right)=M\).

variables

 

\({x}_{{jh}}\)

if h-level facility j is established, then \({x}_{{jh}}=1\); otherwise, \({x}_{{jh}}=0\).

\({y}_{{ijh}}\)

if the type h requirement of city i is allocated to facility j, then \({y}_{{ijh}}=1\); otherwise, \({y}_{{ijh}}=0\).

\({p}_{i}\)

if the city node is attacked, then \({p}_{i}=1\); otherwise, \({p}_{i}=0\).