Table 9 Differences in estimated housing prices in Gwangju.

From: Asymmetric impacts of artificial intelligence on housing price valuation across education levels

 

0–5%

95–100%

0–10%

90–100%

0–20%

80–100%

Panel A.1: Univ. grad. is omitted.

RF-OLS

\(-{0.088}^{\ddagger }\)

\(0.028\)

\(-{0.054}^{\dagger }\)

\({0.032}^{* }\)

\(-{0.055}^{\ddagger }\)

\({0.055}^{\ddagger }\)

 

\(-{10.370}^{\ddagger }\)

\(-{10.614}^{\ddagger }\)

\(-{16.765}^{\ddagger }\)

RF-SLR

\(-{0.077}^{\dagger }\)

\(0.027\)

\(-{0.046}^{\dagger }\)

\(0.028\)

\(-{0.049}^{\ddagger }\)

\({0.049}^{\ddagger }\)

 

\(-{9.070}^{\ddagger }\)

\(-{9.081}^{\ddagger }\)

\(-{14.848}^{\ddagger }\)

XGB-OLS

\(-{0.084}^{\ddagger }\)

\(0.030\)

\(-{0.052}^{\dagger }\)

\({0.032}^{* }\)

\(-{0.054}^{\ddagger }\)

\({0.056}^{\ddagger }\)

 

\(-{10.543}^{\ddagger }\)

\(-{10.659}^{\ddagger }\)

\(-{16.916}^{\ddagger }\)

XGB-SLR

\(-{0.073}^{\dagger }\)

\(0.029\)

\(-{0.044}^{\dagger }\)

\(0.028\)

\(-{0.048}^{\ddagger }\)

\({0.050}^{\ddagger }\)

 

\(-{9.200}^{\ddagger }\)

\(-{9.093}^{\ddagger }\)

\(-{14.972}^{\ddagger }\)

Panel: A.2: Univ. grad. and Top school are omitted.

RF-OLS

\(-{0.091}^{\ddagger }\)

\(0.034\)

\(-{0.059}^{\ddagger }\)

\({0.035}^{* }\)

\(-{0.059}^{\ddagger }\)

\({0.058}^{\ddagger }\)

 

\(-{11.171}^{\ddagger }\)

\(-{11.498}^{\ddagger }\)

\(-{17.620}^{\ddagger }\)

RF-SLR

\(-{0.080}^{\dagger }\)

\(0.032\)

\(-{0.051}^{\dagger }\)

\({0.030}^{* }\)

\(-{0.052}^{\ddagger }\)

\({0.052}^{\ddagger }\)

 

\(-{9.803}^{\ddagger }\)

\(-{9.921}^{\ddagger }\)

\(-{15.658}^{\ddagger }\)

XGB-OLS

\(-{0.091}^{\ddagger }\)

\(0.036\)

\(-{0.057}^{\ddagger }\)

\({0.034}^{* }\)

\(-{0.058}^{\ddagger }\)

\({0.058}^{\ddagger }\)

 

\(-{11.846}^{\ddagger }\)

\(-{11.693}^{\ddagger }\)

\(-{18.137}^{\ddagger }\)

XGB-SLR

\(-{0.080}^{\dagger }\)

\(0.034\)

\(-{0.050}^{\dagger }\)

\(0.030\)

\(-{0.052}^{\ddagger }\)

\({0.052}^{\ddagger }\)

 

\(-{10.385}^{\ddagger }\)

\(-{10.048}^{\ddagger }\)

\(-{16.112}^{\ddagger }\)

Panel B.1: Top school is omitted.

RF-OLS

\(-0.008\)

\(-0.030\)

\(-0.031\)

\(-0.010\)

\(-0.019\)

\(0.014\)

 

\({1.775}^{* }\)

\(-{2.260}^{\dagger }\)

\(-{4.942}^{\ddagger }\)

RF-SLR

\(-0.004\)

\(-0.032\)

\(-0.028\)

\(-0.012\)

\(-0.016\)

\(0.014\)

 

\({2.250}^{\dagger }\)

\(-{1.808}^{* }\)

\(-{4.400}^{\ddagger }\)

XGB-OLS

\(-0.007\)

\(-0.024\)

\(-0.029\)

\(-0.008\)

\(-0.017\)

\(0.014\)

 

\(1.439\)

\(-{2.287}^{\dagger }\)

\(-{4.731}^{\ddagger }\)

XGB-SLR

\(-0.003\)

\(-0.026\)

\(-0.026\)

\(-0.010\)

\(-0.014\)

\(0.013\)

 

\({1.921}^{* }\)

\(-{1.823}^{* }\)

\(-{4.173}^{\ddagger }\)

Panel B.2: Univ. grad. and Top school are omitted.

RF-OLS

\(-0.014\)

\(-0.033\)

\(-{0.040}^{\dagger }\)

\(-0.008\)

\(-{0.025}^{* }\)

\(0.022\)

 

\(-1.392\)

\(-{3.451}^{\ddagger }\)

\(-{6.813}^{\ddagger }\)

RF-SLR

\(-0.010\)

\(-0.035\)

\(-{0.036}^{\dagger }\)

\(-0.010\)

\(-0.020\)

\(0.021\)

 

\({2.022}^{\dagger }\)

\(-{2.862}^{\ddagger }\)

\(-{6.052}^{\ddagger }\)

XGB-OLS

\(-0.010\)

\(-0.034\)

\(-{0.038}^{* }\)

\(-0.009\)

\(-0.022\)

\(0.020\)

 

\({1.967}^{\dagger }\)

\(-{3.150}^{\ddagger }\)

\(-{6.389}^{\ddagger }\)

XGB-SLR

\(-0.006\)

\(-0.036\)

\(-{0.034}^{\dagger }\)

\(-0.011\)

\(-0.018\)

\(0.019\)

 

\({2.485}^{\dagger }\)

\(-{2.544}^{\dagger }\)

\(-{5.607}^{\ddagger }\)

  1. \(\ddagger\), \(\dagger\), and \(*\) indicate significance at the 1%, 5%, and 10% levels, respectively.