Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Climate and Atmospheric Science
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj climate and atmospheric science
  3. articles
  4. article
Projected changes in atmospheric pathways of Western North American heatwaves simulated from high-resolution coupled model simulations
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

Projected changes in atmospheric pathways of Western North American heatwaves simulated from high-resolution coupled model simulations

  • Mingyu Park1,2,3 &
  • Nathaniel C. Johnson2 

npj Climate and Atmospheric Science , Article number:  (2026) Cite this article

  • 1351 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric dynamics
  • Projection and prediction

Abstract

Western North America (WNA) is a regional hotspot for summer heat extremes. However, our understanding of the atmospheric processes driving WNA heatwaves remains largely based on a few case studies. In this study, we investigate the general characteristics of atmospheric pathways associated with WNA heatwaves using a 30-member high-resolution coupled model simulation. Synthesizing the WNA heatwave events across the large ensemble, we reinforce the view that WNA heatwaves are systematically driven by: (1) a Rossby wave train originating from the western North Pacific, (2) poleward moisture transport toward the Gulf of Alaska, occasionally via atmospheric rivers, and (3) downstream ridge amplification over WNA. Although these features also appear in the late twenty-first-century projections, notable changes include farther poleward moisture transport and broader ridge development in the future. Under the anomaly-based heatwave definition used in this study, which removes the influence of mean temperature change, the frequency of WNA heatwaves is projected to decrease. Our findings suggest that mechanisms identified in case studies, including upstream Rossby wave packets and subsequent moist processes, are broadly applicable to understanding WNA heatwaves over recent decades and their projected changes.

Similar content being viewed by others

Projected increase in summer heat-dome-like stationary waves over Northwestern North America

Article Open access 21 November 2023

A westward shift of heatwave hotspots caused by warming-enhanced land–air coupling

Article 20 March 2025

2021 North American heatwave amplified by climate change-driven nonlinear interactions

Article 24 November 2022

Data availability

All data used in this study are publicly available. NOAA-CPC global daily maximum/minimum temperature and precipitation data can be downloaded from https://psl.noaa.gov/data/gridded/index.html. SPEAR Large ensemble data can be downloaded from https://www.gfdl.noaa.gov/spear_large_ensembles/. The CMIP6 model output used in this study is available at https://aims2.llnl.gov/search/cmip6/. The ERA5 reanalysis hourly data used in the Supplementary Information can be downloaded from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels?tab=overview for pressure levels.

Code availability

The feature tracking algorithm code used in this study is a Python open-source package, CONTRACK, which is accessible from https://github.com/steidani/ConTrack52. Other custom scripts directly implement the statistical methods and techniques described in the “Methods” section.

References

  1. World Meteorological Organization. State of the Global Climate 2024 (World Meteorological Organization, 2025).

  2. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Google Scholar 

  3. Donat, M. G., L. V. Alexander, N. Herold, & A. J. Dittus. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res. Atmos. 121, 11,174–11,189 (2016).

  4. Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge University Press, 2021).

  5. Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 108, 17905–17909 (2011).

    Google Scholar 

  6. Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 11, 689–695 (2021).

    Google Scholar 

  7. McHugh, C. E., Delworth, T. L., Cooke, W. & Jia, L. Using large ensembles to examine historical and projected changes in record-breaking summertime temperatures over the Contiguous United States. Earths Future 11 https://doi.org/10.1029/2023ef003954 (2023).

  8. Matthews, T. et al. Humid heat exceeds human tolerance limits and causes mass mortality. Nat. Clim. Change 15, 4–6 (2024).

    Google Scholar 

  9. Ting, M. et al. Contrasting impacts of dry versus humid heat on US corn and soybean yields. Sci. Rep. 13, 710 (2023).

    Google Scholar 

  10. Richardson, D. et al. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 5, 23 (2022).

    Google Scholar 

  11. Tian, Y. et al. Characterizing heatwaves based on land surface energy budget. Commun. Earth Environ. 5 https://doi.org/10.1038/s43247-024-01784-y (2024).

  12. Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    Google Scholar 

  13. McKinnon, K. A., Rhines, A., Tingley, M. P. & Huybers, P. The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. Atmos. 121, 8849–8868 (2016).

    Google Scholar 

  14. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Google Scholar 

  15. White, R. H. et al. The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 14, 727 (2023).

    Google Scholar 

  16. Thompson, V. et al. The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv. 8, eabm6860 (2022).

    Google Scholar 

  17. Zhang, Y. & Boos, W. R. An upper bound for extreme temperatures over midlatitude land. Proc. Natl. Acad. Sci. USA 120, e2215278120 (2023).

    Google Scholar 

  18. Schumacher, D. L., Hauser, M. & Seneviratne, S. I. Drivers and mechanisms of the 2021 Pacific Northwest heatwave. Earths Future 10 https://doi.org/10.1029/2022ef002967 (2022).

  19. Neal, E., Huang, C. S. Y. & Nakamura, N. The 2021 Pacific Northwest heat wave and associated blocking: meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49 https://doi.org/10.1029/2021gl097699 (2022).

  20. Yu, B., Lin, H., Mo, R. & Li, G. A physical analysis of summertime North American heatwaves. Clim. Dyn. 61, 1551–1565 (2023).

    Google Scholar 

  21. Röthlisberger, M. & Papritz, L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci. 16, 210–216 (2023).

    Google Scholar 

  22. Li, X. et al. Role of atmospheric resonance and land-atmosphere feedbacks as a precursor to the June 2021 Pacific Northwest Heat Dome event. Proc. Natl. Acad. Sci. USA 121, e2315330121 (2024).

    Google Scholar 

  23. Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun. Earth Environ. 3 https://doi.org/10.1038/s43247-022-00459-w (2022).

  24. Lin, H., Mo, R. & Vitart, F. The 2021 Western North American heatwave and its subseasonal predictions. Geophys. Res. Lett. 49 https://doi.org/10.1029/2021gl097036 (2022).

  25. Qian, Y. et al. Effects of subseasonal variation in the East Asian monsoon system on the summertime heat wave in Western North America in 2021. Geophys. Res. Lett. 49 https://doi.org/10.1029/2021gl097659 (2022).

  26. Domeisen, D. I. V. et al. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 4, 36–50 (2022).

    Google Scholar 

  27. Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. G. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61 https://doi.org/10.1029/2022rg000780 (2023).

  28. Loikith, P. C., Lintner, B. R. & Sweeney, A. Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the Northwestern United States using self-organizing maps. J. Clim. 30, 2829–2847 (2017).

    Google Scholar 

  29. Steinfeld, D. & Pfahl, S. The role of latent heating in atmospheric blocking dynamics: a global climatology. Clim. Dyn. 53, 6159–6180 (2019).

    Google Scholar 

  30. Lee, H.-I. & Nakamura, N. Imprint of diabatic processes in the waviness of the jet stream: an analysis of local wave activity budget. J. Clim. 37, 5703–5719 (2024).

    Google Scholar 

  31. Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).

    Google Scholar 

  32. Wehner, M. et al. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth Syst. Dyn. 9, 299–311 (2018).

    Google Scholar 

  33. Jia, L. et al. Skillful seasonal prediction of North American summertime heat extremes. J. Clim. 35, 4331–4345 (2022).

    Google Scholar 

  34. Labe, Z. M., Johnson, N. C. & Delworth, T. L. Changes in United States summer temperatures revealed by explainable neural networks. Earths Future 12 https://doi.org/10.1029/2023ef003981 (2024).

  35. Nabizadeh, E., Lubis, S. W. & Hassanzadeh, P. The 3D structure of Northern Hemisphere blocking events: climatology, role of moisture, and response to climate change. J. Clim. 34, 9837–9860 (2021).

  36. Tseng, K. C. et al. When will humanity notice its influence on atmospheric rivers? J. Geophys. Res. Atmos. 127 https://doi.org/10.1029/2021jd036044 (2022).

  37. Park, M., Johnson, N. C. & Delworth, T. L. The driving of North American climate extremes by North Pacific stationary-transient wave interference. Nat. Commun. 15, 7318 (2024).

    Google Scholar 

  38. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Google Scholar 

  39. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Google Scholar 

  40. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  41. Di Luca, A., de Elía, R., Bador, M. & Argüeso, D. Contribution of mean climate to hot temperature extremes for present and future climates. Weather Clim. Extrem. 28, 100255 (2020).

    Google Scholar 

  42. Marin, M., Feng, M., Phillips, H. E. & Bindoff, N. L. A global, multiproduct analysis of coastal marine heatwaves: distribution, characteristics, and long-term trends. J. Geophys. Res. Oceans 126 https://doi.org/10.1029/2020jc016708 (2021).

  43. Duan, S. Q., Findell, K. L. & Wright, J. S. Three regimes of temperature distribution change over dry land, moist land, and oceanic surfaces. Geophys. Res. Lett. 47 https://doi.org/10.1029/2020gl090997 (2020).

  44. Srivastava, A. K., Wehner, M., Bonfils, C., Ullrich, P. A. & Risser, M. Local hydroclimate drives differential warming rates between regular summer days and extreme hot days in the Northern Hemisphere. Weather Clim. Extrem. 45, 100709 (2024).

    Google Scholar 

  45. Chan, P. W., Catto, J. L. & Collins, M. Heatwave–blocking relation change likely dominates over decrease in blocking frequency under global warming. npj Clim. Atmos. Sci. 5, 68 (2022).

    Google Scholar 

  46. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Google Scholar 

  47. Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J. & Shepherd, T. G. Changes in Northern Hemisphere temperature variability shaped by regional warming patterns. Nat. Geosci. 13, 414–421 (2020).

    Google Scholar 

  48. Loikith, P. C. & Broccoli, A. J. Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Clim. 25, 7266–7281 (2012).

    Google Scholar 

  49. Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA 115, 4863–4868 (2018).

    Google Scholar 

  50. Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C. & Vilà-Guerau de Arellano, J. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Google Scholar 

  51. Prodhomme, C. et al. Seasonal prediction of European summer heatwaves. Clim. Dyn. 58, 2149–2166 (2021).

    Google Scholar 

  52. Steinfeld, D., ConTrack - Contour Tracking. GitHub, https://github.com/steidani/ConTrack (2020).

  53. Maddison, J. W., Gray, S. L., Martínez-Alvarado, O. & Williams, K. D. Impact of model upgrades on diabatic processes in extratropical cyclones and downstream forecast evolution. Q. J. R. Meteorol. Soc. 146, 1322–1350 (2020).

    Google Scholar 

  54. Kautz, L.-A. et al. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—a review. Weather Clim. Dyn. 3, 305–336 (2022).

    Google Scholar 

  55. Wandel, J., Büeler, D., Knippertz, P., Quinting, J. F. & Grams, C. M. Why moist dynamic processes matter for the sub-seasonal prediction of atmospheric blocking over Europe. J. Geophys. Res. Atmos. 129 https://doi.org/10.1029/2023jd039791 (2024).

  56. Hauser, S., Teubler, F., Riemer, M., Knippertz, P. & Grams, C. M. Life cycle dynamics of Greenland blocking from a potential vorticity perspective. Weather Clim. Dyn. 5, 633–658 (2024).

    Google Scholar 

  57. Chan, P. W., Hassanzadeh, P. & Kuang, Z. Evaluating indices of blocking anticyclones in terms of their linear relations with surface hot extremes. Geophys. Res. Lett. 46, 4904–4912 (2019).

    Google Scholar 

  58. Loikith, P. C., Singh, D. & Taylor, G. P. Projected changes in atmospheric ridges over the Pacific–North American region using CMIP6 models. J. Clim. 35, 5151–5171 (2022).

    Google Scholar 

  59. Steinfeld, D., Sprenger, M., Beyerle, U. & Pfahl, S. Response of moist and dry processes in atmospheric blocking to climate change. Environ. Res. Lett. 17, 084020 (2022).

    Google Scholar 

  60. Scholz, S. R. & Lora, J. M. Atmospheric rivers cause warm winters and extreme heat events. Nature 636, 640–646 (2024).

    Google Scholar 

  61. Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111 https://doi.org/10.1029/2005jd006290 (2006).

  62. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Google Scholar 

  63. Hsu, H. & Dirmeyer, P. A. Soil moisture-evaporation coupling shifts into new gears under increasing CO(2). Nat. Commun. 14, 1162 (2023).

    Google Scholar 

  64. Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. & Schär, C. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20, 5081–5099 (2007).

    Google Scholar 

  65. Liu, P., Reed, K. A., Garner, S. T., Zhao, M. & Zhu, Y. Blocking simulations in GFDL GCMs for CMIP5 and CMIP6. J. Clim. 35, 5053–5070 (2022).

    Google Scholar 

  66. Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).

    Google Scholar 

  67. Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. V. & Levermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).

    Google Scholar 

  68. Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 43, 1171–1182 (2014).

    Google Scholar 

  69. Chang, E. K. M., Ma, C. G., Zheng, C. & Yau, A. M. W. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43, 2200–2208 (2016).

    Google Scholar 

  70. Priestley, M. D. K. & Catto, J. L. Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure. Weather Clim. Dyn. 3, 337–360 (2022).

    Google Scholar 

  71. Lackmann, G. M., Miller, R. L., Robinson, W. A. & Michaelis, A. C. Persistent anomaly changes in high-resolution climate simulations. J. Clim. 34, 5425–5442 (2021).

  72. Goss, M., Feldstein, S. B. & Lee, S. Stationary wave interference and its relation to tropical convection and Arctic warming. J. Clim. 29, 1369–1389 (2016).

    Google Scholar 

  73. Chemke, R. & Ming, Y. Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett. 47 https://doi.org/10.1029/2020gl090441 (2020).

  74. Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4 https://doi.org/10.1038/s43247-023-00792-8 (2023).

  75. Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 141, 1479–1501 (2015).

    Google Scholar 

  76. Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Google Scholar 

  77. Hoskins, B. J. & Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

  78. White, R. H., Kornhuber, K., Martius, O. & Wirth, V. From atmospheric waves to heatwaves: a waveguide perspective for understanding and predicting concurrent, persistent, and extreme extratropical weather. Bull. Am. Meteorol. Soc. 103, E923–E935 (2022).

    Google Scholar 

  79. Holton, J. R. & Hakim, G. J. An Introduction to Dynamic Meteorology, Vol. 88 (Academic Press, 2013).

  80. Simpson, I. R. et al. An evaluation of the large-scale atmospheric circulation and its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos. 125 https://doi.org/10.1029/2020jd032835 (2020).

  81. Zhang, Y. et al. Disagreement in detected heatwave trends resulting from diagnostic methods. Geophys. Res. Lett. 52 https://doi.org/10.1029/2024gl114398 (2025).

  82. Li, Z. & Ding, Q. A global poleward shift of atmospheric rivers. Sci. Adv. 10, eadq0604 (2024).

    Google Scholar 

  83. Priestley, M. D. K. et al. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33, 6315–6343 (2020).

    Google Scholar 

  84. Delworth, T. L. et al. SPEAR: the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst. 12 https://doi.org/10.1029/2019ms001895 (2020).

  85. Shevliakova, E. et al. The land component LM4.1 of the GFDL earth system model ESM4.1: model description and characteristics of land surface climate and carbon cycling in the historical simulation. J. Adv. Model. Earth Syst. 16 https://doi.org/10.1029/2023ms003922 (2024).

  86. Lubis, S. W. et al. Enhanced Pacific Northwest heat extremes and wildfire risks induced by the boreal summer intraseasonal oscillation. npj Clim. Atmos. Sci. 7, 232 (2024).

    Google Scholar 

  87. Xiang, B., Wang, B., Chen, G. & Delworth, T. L. Prediction of diverse boreal summer intraseasonal oscillation in the GFDL SPEAR model. J. Clim. 37, 2217–2230 (2024).

    Google Scholar 

  88. Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).

    Google Scholar 

  89. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Google Scholar 

  90. Harnik, N., Messori, G., Caballero, R. & Feldstein, S. B. The Circumglobal North American wave pattern and its relation to cold events in eastern North America. Geophys. Res. Lett. 43 https://doi.org/10.1002/2016gl070760 (2016).

  91. Riboldi, J., Leeding, R., Segalini, A. & Messori, G. MultiplE Large-scale Dynamical Pathways For Pan–Atlantic compound cold and windy extremes. Geophys. Res. Lett. 50 https://doi.org/10.1029/2022gl102528 (2023).

  92. Lu, F. et al. GFDL’s SPEAR seasonal prediction system: initialization and ocean tendency adjustment (OTA) for coupled model predictions. J. Adv. Model. Earth Syst. 12 https://doi.org/10.1029/2020ms002149 (2020).

  93. Chen, M. et al. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 113 https://doi.org/10.1029/2007jd009132 (2008).

  94. Guan, B. & Waliser, D. E. Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 120, 12514–12535 (2015).

    Google Scholar 

  95. Tseng, K. C. et al. Are multiseasonal forecasts of atmospheric rivers possible? Geophys. Res. Lett. 48 https://doi.org/10.1029/2021gl094000 (2021).

  96. Clark, J. P., Johnson, N. C., Park, M., Bernardez, M. & Delworth, T. L. Predictable patterns of seasonal atmospheric river variability over North America during winter. Geophys. Res. Lett. 52 https://doi.org/10.1029/2024gl112411 (2025).

  97. Mundhenk, B. D., Barnes, E. A. & Maloney, E. D. All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Clim. 29, 4885–4903 (2016).

    Google Scholar 

  98. Park, M., Johnson, N. C., Hwang, J. & Jia, L. A hybrid approach for skillful multiseasonal prediction of winter North Pacific blocking. npj Clim. Atmos. Sci. 7 https://doi.org/10.1038/s41612-024-00767-2 (2024).

  99. Sousa, P. M., Barriopedro, D., García-Herrera, R., Woollings, T. & Trigo, R. M. A new combined detection algorithm for blocking and subtropical ridges. J. Clim. 34, 7735–7758 (2021).

  100. McKenna, M. & Karamperidou, C. The impacts of El Niño diversity on Northern Hemisphere atmospheric blocking. Geophys. Res. Lett. 50 https://doi.org/10.1029/2023gl104284 (2023).

Download references

Acknowledgements

The authors thank Drs. Liwei Jia and Donghyuck Yoon for helpful comments on an earlier version of the manuscript. M.P. acknowledges funding under award NA18OAR4320123 and NA22OAR4050663D from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the U.S. Department of Commerce.

Author information

Authors and Affiliations

  1. Department of Geosciences, Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

    Mingyu Park

  2. Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA

    Mingyu Park & Nathaniel C. Johnson

  3. Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

    Mingyu Park

Authors
  1. Mingyu Park
    View author publications

    Search author on:PubMed Google Scholar

  2. Nathaniel C. Johnson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.P. conceived the study, conducted the analysis, and drafted the manuscript. N.C.J. contributed to the interpretation of the results, provided critical feedback throughout the development of the project, and participated in writing the manuscript.

Corresponding author

Correspondence to Mingyu Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Johnson, N.C. Projected changes in atmospheric pathways of Western North American heatwaves simulated from high-resolution coupled model simulations. npj Clim Atmos Sci (2026). https://doi.org/10.1038/s41612-025-01319-y

Download citation

  • Received: 18 June 2025

  • Accepted: 31 December 2025

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41612-025-01319-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Climate and Atmospheric Science (npj Clim Atmos Sci)

ISSN 2397-3722 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing