Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of a novel transgenic mouse model to investigate brain-wide activation of astrocyte Gq signaling

Abstract

Astrocytes sense and modify neuronal activity, and accumulating evidence suggests a role for these cells in the modulation of neuroinflammation and cognition. Most experiments investigating the in vivo role of astrocytic signaling use viral vectors to drive astrocyte-specific expression of receptors in localized regions of the brain. However, viral vector-mediated delivery of receptors can lead to off-target inflammation and impact neurogenesis, neuronal function and behavior. Here, we used transgenic mice expressing Cre-inducible hM3Dq, a designer receptor exclusively activated by designer drugs (DREADD), to target the Gq-coupled receptor hM3Dq specifically in astrocytes without the use of viral transduction. We showed that in vitro administration of clozapine N-oxide to primary astrocytes derived from astro-hM3Dq mice increased intracellular calcium levels. Similarly, acute in vivo activation of astrocytic hM3Dq induced time-dependent changes in resting-state brain function as well as increased c-Fos expression throughout the brain. Acute astrocyte-specific hM3Dq activation increased synthesis of cortical mRNA of proinflammatory cytokines TNF, IL-1β and IL-6, while chronic activation did not greatly impact proinflammatory cytokine expression. Importantly, however, acute global activation of astrocyte-specific hM3Dq did not adversely affect behavior in a battery of tasks. Taken together, we conclude that the astro-hM3Dq mouse line can serve as a reliable model for studying the brain-wide role of astrocytic muscarinic and Gq signaling in neuroinflammation, behavior and neuronal activity, mitigating the potential negative effects associated with the use of viral transduction.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Selective astrocytic expression and in vitro activation of hM3Dq in astro-hM3Dq mice.
Fig. 2: Activation of hM3Gq in astrocytes alters TA in rs-fMRI signal.
Fig. 3: Activation of astrocyte hM3Dq signaling increases c-Fos expression.
Fig. 4: Activation of hM3Dq signaling in astrocytes increases cortical cytokine mRNA in acute but not chronic treatment conditions.
Fig. 5: Activation of hM3Dq signaling in astrocytes does not alter baseline behavior.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available via Figshare at the following links. Fig. 1: https://figshare.com/s/18e888119b44f0da4841 (ref. 105); Fig. 2: https://figshare.com/s/093bec02760dae406473 (ref. 106); Fig. 3: https://figshare.com/s/c65502a8c7001b5c5663 (ref. 107); Fig. 4: https://figshare.com/s/89917e718d8ead2f820a (ref. 108); Fig. 5: https://figshare.com/s/1c66f334731d58b4d6ec (ref. 109).

References

  1. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia 61, 1939–1958 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heneka, M. T. et al. Neuroinfl ammation in Alzheimer’s disease Michael. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Medeiros, R. & LaFerla, F. M. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp. Neurol. 239, 133–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haydon, P. G. & Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Goenaga, J., Araque, A., Kofuji, P. & Herrera Moro Chao, D. Calcium signaling in astrocytes and gliotransmitter release. Front. Synaptic Neurosci. 15, 1–11 (2023).

    Article  Google Scholar 

  9. Navarrete, M. et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 10, e1001259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben Menachem-Zidon, O. et al. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain. Behav. Immun. 25, 1008–1016 (2011).

    Article  PubMed  Google Scholar 

  11. Mederos, S. et al. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 67, 915–934 (2019).

    Article  PubMed  Google Scholar 

  12. Perea, G., Yang, A., Boyden, E. S. & Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 (2014).

  13. Sasaki, T. et al. Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc. Natl Acad. Sci. USA 109, 20720–20725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwai, Y. et al. Transient astrocytic Gq signaling underlies remote memory enhancement. Front. Neural Circuits 15, 1–16 (2021).

    Article  Google Scholar 

  15. Osborn, L. M., Kamphuis, W., Wadman, W. J. & Hol, E. M. Astrogliosis: an integral player in the pathogenesis of Alzheimer’s disease. Prog. Neurobiol. 144, 121–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. González-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sánchez, K., Ariza-Salamanca, D. & Mora-Muñoz, L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 10, 427 (2017).

  17. Bhusal, A., Afridi, R., Lee, W.-H. & Suk, K. Bidirectional communication between microglia and astrocytes in neuroinflammation. Curr. Neuropharmacol. 21, 2020–2029 (2022).

    Article  Google Scholar 

  18. Stephenson, J., Nutma, E., van der Valk, P. & Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 154, 204–219 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delvalle, N. M., Fried, D. E., Rivera-Lopez, G., Gaudette, L. & Gulbransen, B. D. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G473–G483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Oksanen, M. et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell. Mol. Life Sci. 76, 2739–2760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neal, M. & Richardson, J. R. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 432–443 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, W., Xie, W., Xiao, Q., Beers, D. R. & Appel, S. H. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem. 99, 1176–1187 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Park, K. W., Lee, D. Y., Joe, E. H., Kim, S. U. & Jin, B. K. Neuroprotective role of microglia expressing interleukin-4. J. Neurosci. Res. 81, 397–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kofuji, P. & Araque, A. G-protein-coupled receptors in astrocyte–neuron communication. Neuroscience 456, 71–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Durkee, C. A. & Araque, A. Diversity and specificity of astrocyte–neuron communication. Neuroscience 396, 73–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71.e14 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Martin-Fernandez, M. et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20, 1540–1548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atasoy, D. & Sternson, S. M. Chemogenetic tools for causal cellular and neuronal biology. Physiol. Rev. 98, 391–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suthard, R. L. et al. Chronic Gq activation of ventral hippocampal neurons and astrocytes differentially affects memory and behavior. Neurobiol. Aging 125, 9–31 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Johnston, S. T. et al. AAV ablates neurogenesis in the adult murine hippocampus. eLife 10, e59291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bender, C., Frik, J. & Gómez, R. M. in Astrocytes (ed. González-Pérez, O.) 109–124 (Nova Science, 2012).

  35. Masala, N. et al. Aberrant hippocampal Ca2+ micro-waves following synapsin-dependent adeno-associated viral expression of Ca2+ indicators. eLife 13, RP93804 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu, H. et al. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis 54, 439–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slezak, M. et al. Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55, 1565–1576 (2007).

    Article  PubMed  Google Scholar 

  38. Agulhon, C. et al. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J. Physiol. 591, 5599–5609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sciolino, N. R. et al. Recombinase-dependent mouse lines for chemogenetic activation of genetically defined cell types. Cell Rep. 15, 2563–2573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Binning, W. et al. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain. Behav. Immun. 88, 791–801 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Pei, Y., Rogan, S. C., Yan, F. & Roth, B. L. Engineered GPCRs as tools to modulate signal transduction. Physiology 23, 313–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Nichols, C. D. & Roth, B. L. Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Front. Mol. Neurosci. 2, 1–10 (2009).

    Article  Google Scholar 

  44. Figley, C. R. & Stroman, P. W. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur. J. Neurosci. 33, 577–588 (2011).

    Article  PubMed  Google Scholar 

  45. Rosenegger, D. G. & Gordon, G. R. A slow or modulatory role of astrocytes in neurovascular coupling. Microcirculation 22, 197–203 (2015).

    Article  PubMed  Google Scholar 

  46. Shinn, M. et al. Functional brain networks reflect spatial and temporal autocorrelation. Nat. Neurosci. 26, 867–878 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. VanElzakker, M., Fevurly, R. D., Breindel, T. & Spencer, R. L. Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn. Mem. 15, 899–908 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dragunow, M. & Faull, R. The use of c-Fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Methods 29, 261–265 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, J. et al. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol. 23, 213 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Dawson, C. A., Jhamandas, J. H. & Krukoff, T. L. Activation by systemic angiotensin II of neurochemically identified neurons in rat hypothalamic paraventricular nucleus. J. Neuroendocrinol. 10, 453–459 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Chaudhuri, A., Zangenehpour, S., Rahbar-Dehgan, F. & Ye, F. Molecular maps of neural activity and quiescence. Acta Neurobiol. Exp. 60, 403–410 (2000).

    Article  CAS  Google Scholar 

  53. Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pearson-Leary, J., Osborne, D. M. & McNay, E. C. Role of glia in stress-induced enhancement and impairment of memory. Front. Integr. Neurosci. 9, 63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang, J.-M. & An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45, 27–37 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rauf, A. et al. Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules 27, 3194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, L. et al. Toward antifragility: social defeat stress enhances learning and memory in young mice via hippocampal synaptosome associated protein 25. Psychol. Sci. 34, 616–632 (2023).

    Article  PubMed  Google Scholar 

  58. Shang, M. J. et al. Moderate white light exposure enhanced spatial memory retrieval by activating a central amygdala-involved circuit in mice. Commun. Biol. 6, 414 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Colombo, E. & Farina, C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37, 608–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103, 702–718 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura, Y. et al. fMRI detects bilateral brain network activation following unilateral chemogenetic activation of direct striatal projection neurons. NeuroImage 220, 117079 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Macvicar, B. A. & Newman, E. A. Astrocyte regulation of blood flow in the brain. Cold Spring Harb. Perspect. Biol. 7, a020388 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bellot-Saez, A., Kékesi, O., Morley, J. W. & Buskila, Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci. Biobehav. Rev. 77, 87–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira, J. F. & Araque, A. Astrocyte regulation of neural circuit activity and network states. Glia 70, 1455–1466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McPhilemy, G. et al. Resting-state network patterns underlying cognitive function in bipolar disorder: a graph theoretical analysis. Brain Connect. 10, 355–367 (2020).

    Article  PubMed  Google Scholar 

  67. Arbabshirani, M. R. et al. Autoconnectivity: a new perspective on human brain function. J. Neurosci. Methods 323, 68–76 (2019).

    Article  PubMed  Google Scholar 

  68. Manninen, T., Havela, R. & Linne, M. L. Computational models for calcium-mediated astrocyte functions. Front. Comput. Neurosci. 12, 14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shigetomi, E., Patel, S. & Khakh, B. S. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26, 300–312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nagai, J. et al. Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron 109, 2256–2274 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pabst, M. et al. Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron 90, 853–865 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Kim, J. H. et al. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol. 22, 1–47 (2024).

    Article  Google Scholar 

  73. Sofroniew, M. V. Astrocyte cells in the brain have immune memory. Nature 627, 744–745 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, H. G. et al. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 627, 865–872 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sofroniew, M. V. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41, 758–770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wendeln, A.-C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki, A. et al. Astrocyte–neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luo, R., Zhou, B., Liao, P., Zuo, Y. & Jiang, R. Disrupting cortical astrocyte Ca2+ signaling in developing brain induces social deficits and depressive-like behaviors. Glia 71, 1592–1606 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Refaeli, R., Kreisel, T., Yaish, T. R., Groysman, M. & Goshen, I. Astrocytes control recent and remote memory strength by affecting the recruitment of the CA1→ACC projection to engrams. Cell Rep. 43, 113943 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Santello, M., Toni, N. & Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. MacDonald, A. J., Holmes, F. E., Beall, C., Pickering, A. E. & Ellacott, K. L. J. Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. Glia 68, 1241–1254 (2020).

    Article  PubMed  Google Scholar 

  82. González-Arias, C. et al. Dysfunctional serotonergic neuron–astrocyte signaling in depressive-like states. Mol. Psychiatry 28, 3856–3873 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Banerjee, T., Pati, S., Tiwari, P. & Vaidya, V. A. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J. Biosci. 47, 68 (2022).

  84. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Salvi, S. S. et al. Acute chemogenetic activation of camkiiα-positive forebrain excitatory neurons regulates anxiety-like behaviour in mice. Front. Behav. Neurosci. 13, 249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kljakic, O. et al. Chemogenetic activation of VGLUT3-expressing neurons decreases movement. Eur. J. Pharmacol. 935, 175298 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. McCarthy, K. D. & De Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  88. Pinteaux, E., Parker, L. C., Rothwell, N. J. & Luheshi, G. N. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J. Neurochem. 83, 754–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Beraldo, F. H. et al. Regulation of amyloid β oligomer binding to neurons and neurotoxicity by the prion protein–mGluR5 complex. J. Biol. Chem. 291, 21945–21955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zerbi, V., Grandjean, J., Rudin, M. & Wenderoth, N. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Neuroimage 123, 11–21 (2015).

    Article  PubMed  Google Scholar 

  91. Aksenov, D. P., Li, L., Miller, M. J., Iordanescu, G. & Wyrwicz, A. M. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J. Cereb. Blood Flow Metab. 35, 1819–1826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011).

    Article  PubMed  Google Scholar 

  94. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    Article  PubMed  Google Scholar 

  95. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Winkler, A. M., Ridgway, G. R., Douaud, G., Nichols, T. E. & Smith, S. M. Faster permutation inference in brain imaging. NeuroImage 141, 502–516 (2016).

    Article  PubMed  Google Scholar 

  97. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44, 83–98 (2009).

    Article  PubMed  Google Scholar 

  98. Winkler, A. M., Webster, M. A., Vidaurre, D., Nichols, T. E. & Smith, S. M. Multi-level block permutation. NeuroImage 123, 253–268 (2015).

    Article  PubMed  Google Scholar 

  99. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Martins-Silva, C. et al. Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. PLoS ONE 6, e17611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martyn, A. C. et al. Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proc. Natl Acad. Sci. USA 109, 17651–17656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Janickova, H. et al. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J. 33, 7018–7036 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Kljakic, O. et al. Cholinergic transmission from the basal forebrain modulates social memory in male mice. Eur. J. Neurosci. 54, 6075–6092 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Yates, S. C. et al. QUINT: workflow for quantification and spatial analysis of features in histological images from rodent brain. Front. Neuroinform. 13, 1–14 (2019).

    Article  Google Scholar 

  105. Crooks, A. M. et al. Figure 1. Figshare https://figshare.com/s/18e888119b44f0da4841 (2025).

  106. Crooks, A. M. et al. Figure 2. Figshare https://figshare.com/s/093bec02760dae406473 (2025).

  107. Crooks, A. M. et al. Figure 3. Figshare https://figshare.com/s/c65502a8c7001b5c5663 (2025).

  108. Crooks, A. M. et al. Figure 4. Figshare https://figshare.com/s/89917e718d8ead2f820a (2025).

  109. Crooks, A. M. et al. Figure 5. Figshare https://figshare.com/s/1c66f334731d58b4d6ec (2025).

Download references

Acknowledgements

GLASTcreERT2 (B6.Cg-Tg(Slc1a3-cre/ERT2)45-72Fwp) mice were a gracious gift from F. W. Pfrieger. hM3Gq-DREADD (B6N;129-Tg(CAG-CHRM3*,-mCitrine)1Ute/J) mice were a generous gift from U. Hochgeschwender and B. Roth. We thank M. Cowan, J. Fan, M. Bellyou and A. X. Li for animal care and technical support. L.M.S., T.J.B., V.F.P. and M.A.M.P., received support from the Canadian Institutes of Health Research (CIHR, PJT 162431, PJT 159781), the Natural Science and Engineering Research Council of Canada (06577-2018 RGPIN; 03592-2021 RGPIN) and a BrainsCAN Canada First Research Excellence Fund Accelerator Awards, Initiative for Translational Neuroscience as well as support from New Frontiers Research Fund (NFRF-TRIDENT, held by R.S.M.). M.A.M.P. is a Tier I Canada Research Chair in Neurochemistry of Dementia. L.M.S. is a Tier I Canada Research Chair in Translational Cognitive Neuroscience and a CIFAR Fellow in the Brain, Mind and Consciousness program. T.J.B. is a Western Research Chair. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.M.C., K.M.O., S.D.S. and A.E.H.-C. performed experiments and collected the data. A.M.C., K.M.O., G.N. and A.E. performed the analysis. R.S.M., L.M.S., T.J.B., T.W.S., V.F.P. and M.A.M.P. supervised the study. A.M.C. wrote the manuscript with input from K.M.O., G.N., T.W.S., V.F.P. and M.A.M.P. All the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Vania F. Prado or Marco A. M. Prado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Karolina Domingues, Candela González-Arias and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Table 1

Full list of Allen Brain atlas labels, abbreviated in Fig. 2e, as well as median t-statistics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crooks, A.M., Onuska, K.M., Ngo, G. et al. Characterization of a novel transgenic mouse model to investigate brain-wide activation of astrocyte Gq signaling. Lab Anim 54, 207–217 (2025). https://doi.org/10.1038/s41684-025-01587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41684-025-01587-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing