Abstract
Astrocytes sense and modify neuronal activity, and accumulating evidence suggests a role for these cells in the modulation of neuroinflammation and cognition. Most experiments investigating the in vivo role of astrocytic signaling use viral vectors to drive astrocyte-specific expression of receptors in localized regions of the brain. However, viral vector-mediated delivery of receptors can lead to off-target inflammation and impact neurogenesis, neuronal function and behavior. Here, we used transgenic mice expressing Cre-inducible hM3Dq, a designer receptor exclusively activated by designer drugs (DREADD), to target the Gq-coupled receptor hM3Dq specifically in astrocytes without the use of viral transduction. We showed that in vitro administration of clozapine N-oxide to primary astrocytes derived from astro-hM3Dq mice increased intracellular calcium levels. Similarly, acute in vivo activation of astrocytic hM3Dq induced time-dependent changes in resting-state brain function as well as increased c-Fos expression throughout the brain. Acute astrocyte-specific hM3Dq activation increased synthesis of cortical mRNA of proinflammatory cytokines TNF, IL-1β and IL-6, while chronic activation did not greatly impact proinflammatory cytokine expression. Importantly, however, acute global activation of astrocyte-specific hM3Dq did not adversely affect behavior in a battery of tasks. Taken together, we conclude that the astro-hM3Dq mouse line can serve as a reliable model for studying the brain-wide role of astrocytic muscarinic and Gq signaling in neuroinflammation, behavior and neuronal activity, mitigating the potential negative effects associated with the use of viral transduction.
This is a preview of subscription content, access via your institution
Access options





Similar content being viewed by others
Data availability
Data supporting the findings of this study are available via Figshare at the following links. Fig. 1: https://figshare.com/s/18e888119b44f0da4841 (ref. 105); Fig. 2: https://figshare.com/s/093bec02760dae406473 (ref. 106); Fig. 3: https://figshare.com/s/c65502a8c7001b5c5663 (ref. 107); Fig. 4: https://figshare.com/s/89917e718d8ead2f820a (ref. 108); Fig. 5: https://figshare.com/s/1c66f334731d58b4d6ec (ref. 109).
References
Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).
Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).
Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia 61, 1939–1958 (2013).
Heneka, M. T. et al. Neuroinfl ammation in Alzheimer’s disease Michael. Lancet Neurol. 14, 388–405 (2015).
Medeiros, R. & LaFerla, F. M. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp. Neurol. 239, 133–138 (2013).
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
Haydon, P. G. & Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031 (2006).
Goenaga, J., Araque, A., Kofuji, P. & Herrera Moro Chao, D. Calcium signaling in astrocytes and gliotransmitter release. Front. Synaptic Neurosci. 15, 1–11 (2023).
Navarrete, M. et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 10, e1001259 (2012).
Ben Menachem-Zidon, O. et al. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain. Behav. Immun. 25, 1008–1016 (2011).
Mederos, S. et al. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 67, 915–934 (2019).
Perea, G., Yang, A., Boyden, E. S. & Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 (2014).
Sasaki, T. et al. Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc. Natl Acad. Sci. USA 109, 20720–20725 (2012).
Iwai, Y. et al. Transient astrocytic Gq signaling underlies remote memory enhancement. Front. Neural Circuits 15, 1–16 (2021).
Osborn, L. M., Kamphuis, W., Wadman, W. J. & Hol, E. M. Astrogliosis: an integral player in the pathogenesis of Alzheimer’s disease. Prog. Neurobiol. 144, 121–141 (2016).
González-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sánchez, K., Ariza-Salamanca, D. & Mora-Muñoz, L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 10, 427 (2017).
Bhusal, A., Afridi, R., Lee, W.-H. & Suk, K. Bidirectional communication between microglia and astrocytes in neuroinflammation. Curr. Neuropharmacol. 21, 2020–2029 (2022).
Stephenson, J., Nutma, E., van der Valk, P. & Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 154, 204–219 (2018).
Delvalle, N. M., Fried, D. E., Rivera-Lopez, G., Gaudette, L. & Gulbransen, B. D. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G473–G483 (2018).
Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).
Oksanen, M. et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell. Mol. Life Sci. 76, 2739–2760 (2019).
Neal, M. & Richardson, J. R. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 432–443 (2018).
Zhao, W., Xie, W., Xiao, Q., Beers, D. R. & Appel, S. H. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem. 99, 1176–1187 (2006).
Park, K. W., Lee, D. Y., Joe, E. H., Kim, S. U. & Jin, B. K. Neuroprotective role of microglia expressing interleukin-4. J. Neurosci. Res. 81, 397–402 (2005).
Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).
Kofuji, P. & Araque, A. G-protein-coupled receptors in astrocyte–neuron communication. Neuroscience 456, 71–84 (2021).
Durkee, C. A. & Araque, A. Diversity and specificity of astrocyte–neuron communication. Neuroscience 396, 73–78 (2019).
Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71.e14 (2018).
Martin-Fernandez, M. et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20, 1540–1548 (2017).
Atasoy, D. & Sternson, S. M. Chemogenetic tools for causal cellular and neuronal biology. Physiol. Rev. 98, 391–418 (2018).
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
Suthard, R. L. et al. Chronic Gq activation of ventral hippocampal neurons and astrocytes differentially affects memory and behavior. Neurobiol. Aging 125, 9–31 (2023).
Johnston, S. T. et al. AAV ablates neurogenesis in the adult murine hippocampus. eLife 10, e59291 (2021).
Bender, C., Frik, J. & Gómez, R. M. in Astrocytes (ed. González-Pérez, O.) 109–124 (Nova Science, 2012).
Masala, N. et al. Aberrant hippocampal Ca2+ micro-waves following synapsin-dependent adeno-associated viral expression of Ca2+ indicators. eLife 13, RP93804 (2024).
Zhu, H. et al. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis 54, 439–446 (2016).
Slezak, M. et al. Transgenic mice for conditional gene manipulation in astroglial cells. Glia 55, 1565–1576 (2007).
Agulhon, C. et al. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J. Physiol. 591, 5599–5609 (2013).
Sciolino, N. R. et al. Recombinase-dependent mouse lines for chemogenetic activation of genetically defined cell types. Cell Rep. 15, 2563–2573 (2016).
Binning, W. et al. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain. Behav. Immun. 88, 791–801 (2020).
Pei, Y., Rogan, S. C., Yan, F. & Roth, B. L. Engineered GPCRs as tools to modulate signal transduction. Physiology 23, 313–321 (2008).
Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).
Nichols, C. D. & Roth, B. L. Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Front. Mol. Neurosci. 2, 1–10 (2009).
Figley, C. R. & Stroman, P. W. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur. J. Neurosci. 33, 577–588 (2011).
Rosenegger, D. G. & Gordon, G. R. A slow or modulatory role of astrocytes in neurovascular coupling. Microcirculation 22, 197–203 (2015).
Shinn, M. et al. Functional brain networks reflect spatial and temporal autocorrelation. Nat. Neurosci. 26, 867–878 (2023).
VanElzakker, M., Fevurly, R. D., Breindel, T. & Spencer, R. L. Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn. Mem. 15, 899–908 (2008).
Dragunow, M. & Faull, R. The use of c-Fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Methods 29, 261–265 (1989).
Lin, J. et al. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol. 23, 213 (2023).
Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).
Dawson, C. A., Jhamandas, J. H. & Krukoff, T. L. Activation by systemic angiotensin II of neurochemically identified neurons in rat hypothalamic paraventricular nucleus. J. Neuroendocrinol. 10, 453–459 (1998).
Chaudhuri, A., Zangenehpour, S., Rahbar-Dehgan, F. & Ye, F. Molecular maps of neural activity and quiescence. Acta Neurobiol. Exp. 60, 403–410 (2000).
Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).
Pearson-Leary, J., Osborne, D. M. & McNay, E. C. Role of glia in stress-induced enhancement and impairment of memory. Front. Integr. Neurosci. 9, 63 (2016).
Zhang, J.-M. & An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45, 27–37 (2007).
Rauf, A. et al. Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules 27, 3194 (2022).
Yang, L. et al. Toward antifragility: social defeat stress enhances learning and memory in young mice via hippocampal synaptosome associated protein 25. Psychol. Sci. 34, 616–632 (2023).
Shang, M. J. et al. Moderate white light exposure enhanced spatial memory retrieval by activating a central amygdala-involved circuit in mice. Commun. Biol. 6, 414 (2023).
Colombo, E. & Farina, C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. 37, 608–620 (2016).
Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103, 702–718 (2019).
Nakamura, Y. et al. fMRI detects bilateral brain network activation following unilateral chemogenetic activation of direct striatal projection neurons. NeuroImage 220, 117079 (2020).
Macvicar, B. A. & Newman, E. A. Astrocyte regulation of blood flow in the brain. Cold Spring Harb. Perspect. Biol. 7, a020388 (2015).
Bellot-Saez, A., Kékesi, O., Morley, J. W. & Buskila, Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci. Biobehav. Rev. 77, 87–97 (2017).
Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R. & Begley, D. J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37, 13–25 (2010).
Oliveira, J. F. & Araque, A. Astrocyte regulation of neural circuit activity and network states. Glia 70, 1455–1466 (2022).
McPhilemy, G. et al. Resting-state network patterns underlying cognitive function in bipolar disorder: a graph theoretical analysis. Brain Connect. 10, 355–367 (2020).
Arbabshirani, M. R. et al. Autoconnectivity: a new perspective on human brain function. J. Neurosci. Methods 323, 68–76 (2019).
Manninen, T., Havela, R. & Linne, M. L. Computational models for calcium-mediated astrocyte functions. Front. Comput. Neurosci. 12, 14 (2018).
Shigetomi, E., Patel, S. & Khakh, B. S. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26, 300–312 (2016).
Nagai, J. et al. Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron 109, 2256–2274 (2021).
Pabst, M. et al. Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron 90, 853–865 (2016).
Kim, J. H. et al. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol. 22, 1–47 (2024).
Sofroniew, M. V. Astrocyte cells in the brain have immune memory. Nature 627, 744–745 (2024).
Lee, H. G. et al. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 627, 865–872 (2024).
Sofroniew, M. V. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41, 758–770 (2020).
Wendeln, A.-C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).
Suzuki, A. et al. Astrocyte–neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).
Luo, R., Zhou, B., Liao, P., Zuo, Y. & Jiang, R. Disrupting cortical astrocyte Ca2+ signaling in developing brain induces social deficits and depressive-like behaviors. Glia 71, 1592–1606 (2023).
Refaeli, R., Kreisel, T., Yaish, T. R., Groysman, M. & Goshen, I. Astrocytes control recent and remote memory strength by affecting the recruitment of the CA1→ACC projection to engrams. Cell Rep. 43, 113943 (2024).
Santello, M., Toni, N. & Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019).
MacDonald, A. J., Holmes, F. E., Beall, C., Pickering, A. E. & Ellacott, K. L. J. Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. Glia 68, 1241–1254 (2020).
González-Arias, C. et al. Dysfunctional serotonergic neuron–astrocyte signaling in depressive-like states. Mol. Psychiatry 28, 3856–3873 (2023).
Banerjee, T., Pati, S., Tiwari, P. & Vaidya, V. A. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J. Biosci. 47, 68 (2022).
Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).
Salvi, S. S. et al. Acute chemogenetic activation of camkiiα-positive forebrain excitatory neurons regulates anxiety-like behaviour in mice. Front. Behav. Neurosci. 13, 249 (2019).
Kljakic, O. et al. Chemogenetic activation of VGLUT3-expressing neurons decreases movement. Eur. J. Pharmacol. 935, 175298 (2022).
McCarthy, K. D. & De Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).
Pinteaux, E., Parker, L. C., Rothwell, N. J. & Luheshi, G. N. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J. Neurochem. 83, 754–763 (2002).
Beraldo, F. H. et al. Regulation of amyloid β oligomer binding to neurons and neurotoxicity by the prion protein–mGluR5 complex. J. Biol. Chem. 291, 21945–21955 (2016).
Zerbi, V., Grandjean, J., Rudin, M. & Wenderoth, N. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Neuroimage 123, 11–21 (2015).
Aksenov, D. P., Li, L., Miller, M. J., Iordanescu, G. & Wyrwicz, A. M. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J. Cereb. Blood Flow Metab. 35, 1819–1826 (2015).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).
Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011).
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).
Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).
Winkler, A. M., Ridgway, G. R., Douaud, G., Nichols, T. E. & Smith, S. M. Faster permutation inference in brain imaging. NeuroImage 141, 502–516 (2016).
Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44, 83–98 (2009).
Winkler, A. M., Webster, M. A., Vidaurre, D., Nichols, T. E. & Smith, S. M. Multi-level block permutation. NeuroImage 123, 253–268 (2015).
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
Martins-Silva, C. et al. Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. PLoS ONE 6, e17611 (2011).
Martyn, A. C. et al. Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proc. Natl Acad. Sci. USA 109, 17651–17656 (2012).
Janickova, H. et al. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J. 33, 7018–7036 (2019).
Kljakic, O. et al. Cholinergic transmission from the basal forebrain modulates social memory in male mice. Eur. J. Neurosci. 54, 6075–6092 (2021).
Yates, S. C. et al. QUINT: workflow for quantification and spatial analysis of features in histological images from rodent brain. Front. Neuroinform. 13, 1–14 (2019).
Crooks, A. M. et al. Figure 1. Figshare https://figshare.com/s/18e888119b44f0da4841 (2025).
Crooks, A. M. et al. Figure 2. Figshare https://figshare.com/s/093bec02760dae406473 (2025).
Crooks, A. M. et al. Figure 3. Figshare https://figshare.com/s/c65502a8c7001b5c5663 (2025).
Crooks, A. M. et al. Figure 4. Figshare https://figshare.com/s/89917e718d8ead2f820a (2025).
Crooks, A. M. et al. Figure 5. Figshare https://figshare.com/s/1c66f334731d58b4d6ec (2025).
Acknowledgements
GLASTcreERT2 (B6.Cg-Tg(Slc1a3-cre/ERT2)45-72Fwp) mice were a gracious gift from F. W. Pfrieger. hM3Gq-DREADD (B6N;129-Tg(CAG-CHRM3*,-mCitrine)1Ute/J) mice were a generous gift from U. Hochgeschwender and B. Roth. We thank M. Cowan, J. Fan, M. Bellyou and A. X. Li for animal care and technical support. L.M.S., T.J.B., V.F.P. and M.A.M.P., received support from the Canadian Institutes of Health Research (CIHR, PJT 162431, PJT 159781), the Natural Science and Engineering Research Council of Canada (06577-2018 RGPIN; 03592-2021 RGPIN) and a BrainsCAN Canada First Research Excellence Fund Accelerator Awards, Initiative for Translational Neuroscience as well as support from New Frontiers Research Fund (NFRF-TRIDENT, held by R.S.M.). M.A.M.P. is a Tier I Canada Research Chair in Neurochemistry of Dementia. L.M.S. is a Tier I Canada Research Chair in Translational Cognitive Neuroscience and a CIFAR Fellow in the Brain, Mind and Consciousness program. T.J.B. is a Western Research Chair. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
A.M.C., K.M.O., S.D.S. and A.E.H.-C. performed experiments and collected the data. A.M.C., K.M.O., G.N. and A.E. performed the analysis. R.S.M., L.M.S., T.J.B., T.W.S., V.F.P. and M.A.M.P. supervised the study. A.M.C. wrote the manuscript with input from K.M.O., G.N., T.W.S., V.F.P. and M.A.M.P. All the authors approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Lab Animal thanks Karolina Domingues, Candela González-Arias and other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–3.
Supplementary Table 1
Full list of Allen Brain atlas labels, abbreviated in Fig. 2e, as well as median t-statistics.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Crooks, A.M., Onuska, K.M., Ngo, G. et al. Characterization of a novel transgenic mouse model to investigate brain-wide activation of astrocyte Gq signaling. Lab Anim 54, 207–217 (2025). https://doi.org/10.1038/s41684-025-01587-4
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41684-025-01587-4


