Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient production of common marmoset embryos with in vitro fertilization and somatic cell nuclear transfer following optimized hormonal stimulation and laparoscopic oocyte collection

Abstract

Marmosets are a valuable model for studying human disorders, but developing specific genetic models requires efficient protocols for embryo genomic manipulation. Although marmoset embryos have been produced in vitro, oocyte retrieval traditionally involves extended recombinant human follicle-stimulating hormone (FSH) treatment (9–10 days), surgical laparotomy and ovarian exposure, limiting repeat procedures. Here we evaluated a simpler, cost-effective ovarian stimulation protocol using porcine pituitary FSH, combined with laparoscopic ovum pick-up (LOPU), for in vitro production of marmoset embryos via in vitro fertilization (IVF) and somatic cell nuclear transfer. A total of 3,922 oocytes were retrieved from 129 LOPU procedures, averaging 30.4 oocytes per LOPU, with 85.5% (26.0 per LOPU) graded as viable. The procedure was safe, with no adverse effects observed in ovaries or fimbria after up to nine LOPU sessions. Most collected oocytes were meiotically immature and matured in vitro before use. Following IVF, approximately 40% of oocytes cleaved, and 40% of cleaved embryos developed to the expanded blastocyst stage. LOPU-derived oocytes also supported somatic cell nuclear transfer, with 69.8% of embryos cleaving and 21.8% forming blastocysts. IVF-derived blastocyst quality was assessed by total cell count, immunodetection of SOX2 (inner cell mass) and CDX2 (trophectoderm), and cryotolerance. Embryo transfer to recipients resulted in successful live births. These findings demonstrate that a simplified pituitary FSH protocol followed by LOPU is an efficient, less invasive and safe method for retrieving developmentally competent marmoset oocytes, offering a promising approach for advancing marmoset-based research in disease modeling and reproductive biotechnology.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Ovarian images from a marmoset subjected to nine oocyte collection procedures by LOPU between January 2021 and August 2022.
Fig. 2: In vitro embryo production from LOPU-sourced marmoset oocytes.
Fig. 3: Representative pictures of marmoset blastocysts produced in vitro.
Fig. 4: Marmosets generated by IVF-derived embryos after laparoscopic retrieval and IVM of oocytes.

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Mitchell, J. F. & Leopold, D. A. The marmoset monkey as a model for visual neuroscience. Neurosci. Res. 93, 20–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Philippens, I. H. C. H. M. in The Common Marmoset in Captivity and Biomedical Research Vol. 1. (eds Marini, R. P. et al.) 415–435 (Academic Press, 2019).

  3. Kap, Y. S. D. J. & ‘t Hart, B. A. in The Common Marmoset in Captivity and Biomedical Research Vol. 1. (eds Marini, R. P. et al.) 437–449 (Academic Press, 2019).

  4. French, J. A. in The Common Marmoset in Captivity and Biomedical Research Vol. 1. (eds Marini, R. P. et al.) 477–491 (Academic Press, 2019).

  5. Inoue, T., Yurimoto, T., Seki, F., Sato, K. & Sasaki, E. The common marmoset in biomedical research: experimental disease models and veterinary management. Exp. Anim. 72, 140–150 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Okano, H., Hikishima, K., Iriki, A. & Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin. Fetal Neonatal Med. 17, 336–340 (2012).

    Article  PubMed  Google Scholar 

  7. Marini, R. P., Wachtman, L. M., Tardif, S. D., Mansfield, K. & Fox, J, G. The Common Marmoset in Captivity and Biomedical Research 1st edn, Vol. 1 (Academic Press, 2019).

  8. Chan, A. W. et al. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS ONE 10, e0122335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Niu, Y. et al. Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum. Mol. Genet. 24, 2308–2317 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Niu, Y. et al. Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc. Natl Acad. Sci. USA 107, 17663–17667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, S. H. et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453, 921–924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasaki, E. et al. Generation of transgenic non-human primates with germline transmission. Nature 459, 523–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, T. et al. Birth of healthy offspring following ICSI in in vitro-matured common marmoset (Callithrix jacchus) oocytes. PLoS ONE 9, e95560 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sato, K. S. et al. A non-human primate model of familial Alzheimer’s disease. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.264259 (2020).

  16. Marshall, V. S., Browne, M. A., Knowles, L., Golos, T. G. & Thomson, J. A. Ovarian stimulation of marmoset monkeys (Callithrix jacchus) using recombinant human follicle stimulating hormone. J. Med. Primatol. 32, 57–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Kurotaki, Y. S. E. Practical reproductive techniques for the common marmoset. J. Mamm. Ova Res. 34, 9 (2017).

    Article  Google Scholar 

  18. Park, J. E. et al. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci. Rep. 6, 34931 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanda, A., Nobukiyo, A., Yoshioka, M., Hatakeyama, T. & Sotomaru, Y. Quality of common marmoset (Callithrix jacchus) oocytes collected after ovarian stimulation. Theriogenology 106, 221–226 (2018).

    Article  PubMed  Google Scholar 

  20. Tomioka, I., Takahashi, T., Shimada, A., Yoshioka, K. & Sasaki, E. Birth of common marmoset (Callithrix jacchus) offspring derived from in vitro-matured oocytes in chemically defined medium. Theriogenology 78, 1487–1493 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Grupen, C. G. et al. Effects of ovarian stimulation, with and without human chorionic gonadotrophin, on oocyte meiotic and developmental competence in the marmoset monkey (Callithrix jacchus). Theriogenology 68, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Tkachenko, O. Y. et al. In vitro matured oocytes have a higher developmental potential than in vivo matured oocytes after hormonal ovarian stimulation in Callithrix jacchus. J. Ovarian Res. 17, 120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baldassarre, H., de Matos, D. G., Furnus, C. C., Castro, T. E. & Cabrera Fischer, E. I. Technique for efficient recovery of sheep oocytes by laparoscopic folliculocentesis. Anim. Reprod. Sci. 35, 145–150 (1994).

    Article  Google Scholar 

  24. Baldassarre, H. et al. Advances in the production and propagation of transgenic goats using laparoscopic ovum pick-up and in vitro embryo production technologies. Theriogenology 57, 275–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Baldassarre, H. et al. Interval of gonadotropin administration for in vitro embryo production from oocytes collected from Holstein calves between 2 and 6 months of age by repeated laparoscopy. Theriogenology 116, 64–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Currin, L. et al. Optimization of gonadotropin stimulation protocols for in vitro embryo production in prepubertal Mediterranean water buffalo. Theriogenology 197, 84–93 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Baldassarre, H. et al. Laparoscopic ovum-pick up and in vitro embryo production in gonadotropin-stimulated gilts: preliminary results and envisioned applications. Theriogenology 214, 141–147 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Tardif, S. D., Lacker, H. M. & Feuer, M. Follicular development and ovulation in the marmoset monkey as determined by repeated laparoscopic examination. Biol. Reprod. 48, 1113–1119 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Eom, H. et al. Laparoscopic ovum pick up in common marmoset (Callithrix jacchus). Theriogenol. Wild 7, 1–6 (2025).

    Google Scholar 

  30. Blondin, P., Coenen, K., Guilbault, L. A. & Sirard, M. A. In vitro production of bovine embryos: developmental competence is acquired before maturation. Theriogenology 47, 1061–1075 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Landry, D. A. et al. Comparative analysis of granulosa cell gene expression in association with oocyte competence in FSH-stimulated Holstein cows. Reprod. Fertil. Dev. 29, 2324–2335 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Grynberg, M. et al. Comparative effectiveness of gonadotropins used for ovarian stimulation during assisted reproductive technologies (ART) in France: a real-world observational study from the French nationwide claims database (SNDS). Best Pract. Res. Clin. Obstet. Gynaecol. 88, 102308 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Summers, P. M., Shephard, A. M., Taylor, C. T. & Hearn, J. P. The effects of cryopreservation and transfer on embryonic development in the common marmoset monkey, Callithrix jacchus. J. Reprod. Fertil. 79, 241–250 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Lopata, A., Summers, P. M. & Hearn, J. P. Births following the transfer of cultured embryos obtained by in vitro and in vivo fertilization in the marmoset monkey (Callithrix jacchus). Fertil. Steril. 50, 503–509 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Kropp, J., Di Marzo, A. & Golos, T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol. Reprod. 96, 277–287 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sotomaru, Y. et al. Preimplantation development of somatic cell cloned embryos in the common marmoset (Callithrix jacchus). Cloning Stem Cells 11, 575–583 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Ishibashi, H. et al. Efficient embryo transfer in the common marmoset monkey (Callithrix jacchus) with a reduced transfer volume: a non-surgical approach with cryopreserved late-stage embryos. Biol. Reprod. 88, 115 (2013).

    Article  PubMed  Google Scholar 

  38. Sato, K. et al. Production of a heterozygous exon skipping model of common marmosets using gene-editing technology. Lab Anim. 53, 244–251 (2024).

    Article  Google Scholar 

  39. Drummer, C. et al. Generation and breeding of EGFP-transgenic marmoset monkeys: cell chimerism and implications for disease modeling. Cells 10, 505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fortune, J. E. Ovarian follicular growth and development in mammals. Biol. Reprod. 50, 225–232 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Gougeon, A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17, 121–155 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Ginther, O. J., Beg, M. A., Donadeu, F. X. & Bergfelt, D. R. Mechanism of follicle deviation in monovular farm species. Anim. Reprod. Sci. 78, 239–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Eppig, J. J., Wigglesworth, K. & Pendola, F. L. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc. Natl Acad. Sci. USA 99, 2890–2894 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seita, Y. et al. Poor second ovarian stimulation in cynomolgus monkeys (Macaca fascicularis) is associated with the production of antibodies against human follicle-stimulating hormone. J. Reprod. Dev. 65, 267–273 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller, T. et al. Chorionic gonadotrophin beta subunit mRNA but not luteinising hormone beta subunit mRNA is expressed in the pituitary of the common marmoset (Callithrix jacchus). J. Mol. Endocrinol. 32, 115–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Gilchrist, R. B., Nayudu, P. L. & Hodges, J. K. Maturation, fertilization, and development of marmoset monkey oocytes in vitro. Biol. Reprod. 56, 238–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co, London, 1959).

  48. Liu, Z. et al. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172, 881–887 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Liao, Z. et al. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer. Nat. Commun. 15, 5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rizos, D., Ward, F., Boland, M. P. & Lonergan, P. Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology 56, 1–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Kocyigit, A. & Cevik, M. Correlation between the cryosurvival, cell number and diameter in bovine in vitro produced embryos. Cryobiology 73, 203–208 (2016).

    Article  PubMed  Google Scholar 

  52. Baldassarre, H. Laparoscopic ovum pick-up followed by in vitro embryo production and transfer in assisted breeding programs for ruminants. Animals 11, 216 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bo, G. A., Cedeno, A. & Mapletoft, R. J. Strategies to increment in vivo and in vitro embryo production and transfer in cattle. Anim. Reprod. 16, 411–422 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Currin, L. et al. Factors affecting the efficiency of in vitro embryo production in prepubertal Mediterranean water buffalo. Animals 12, 3549 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez-Bulnes, A., Garcia-Garcia, R. M., Santiago-Moreno, J., Lopez-Sebastian, A. & Cocero, M. J. Effect of follicular status on superovulatory response in ewes is influenced by presence of corpus luteum at first FSH dose. Theriogenology 58, 1607–1614 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Mapletoft, R. J., Steward, K. B. & Adams, G. P. Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42, 601–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Piekarski, N. et al. A comparison of oocyte yield between ultrasound-guided and laparoscopic oocyte retrieval in rhesus macaques. Animals 13, 3017 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yoshioka, K., Suzuki, C. & Onishi, A. Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213 (2008).

    Article  PubMed  Google Scholar 

  59. Schneiders, A., Sonksen, J. & Hodges, J. K. Penile vibratory stimulation in the marmoset monkey: a practical alternative to electro-ejaculation, yielding ejaculates of enhanced quality. J. Med. Primatol. 33, 98–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Toyoda, Y. & Yokoyama, M. The early history of the TYH medium for in vitro fertilization of mouse ova. J. Mamm. Ova Res. 33, 3–10 (2016).

    Article  Google Scholar 

  61. Glanzner, W. G., Rissi, V. B. & Bordignon, V. Somatic cell nuclear transfer in pigs. Methods Mol. Biol. 2647, 197–210 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Van Thuan, N. et al. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138, 309–317 (2009).

    Article  PubMed  Google Scholar 

  63. Tomioka, I. et al. Generation of transgenic marmosets using a tetracyclin-inducible transgene expression system as a neurodegenerative disease model. Biol. Reprod. 97, 772–780 (2017).

    Article  PubMed  Google Scholar 

  64. Marshall, V. S., Kalishman, J. & Thomson, J. A. Nonsurgical embryo transfer in the common marmoset monkey. J. Med. Primatol. 26, 241–247 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (PJT-180573 to K.M.), Natural Sciences and Engineering Research Council of Canada (RGPIN/03395-2022 to K.M.), McGill University’s Healthy Brains, Healthy Lives Canada First Research Excellence Fund, Azrieli Centre for Autism Research, Fondation Courtois and Montreal General Hospital Foundation. We recognize the support and expert animal care from the laboratory animal professionals of the Animal Resources Division of the RI-MUHC.

Author information

Authors and Affiliations

Authors

Contributions

H.B., W.G.G., K.G., K.M. and V.B. designed this study. H.B., W.G.G., K.G., R.R., A.H.K.F., A.S., A.P., I.C. and L.C. contributed to LOPU activities. H.B., W.G.G., K.G., R.R., A.S., A.P. and I.C. performed embryo transfers. K.G. and W.G.G. performed IVM, IVF and SCNT experiments. I.C. collected marmoset sperm for IVF. H.B., W.G.G., K.G., R.R., K.M. and V.B. analyzed and interpreted the data. H.B., W.G.G., K.G., R.R., K.M. and V.B. wrote and edited the manuscript. All authors provided feedback and agreed on the final version of the manuscript.

Corresponding authors

Correspondence to Keith Murai or Vilceu Bordignon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Olena Eikel and Erika Sasaki for their contribution to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Table 1

Statistical source data.

Source Data Table 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldassarre, H., Glanzner, W.G., Gutierrez, K. et al. Efficient production of common marmoset embryos with in vitro fertilization and somatic cell nuclear transfer following optimized hormonal stimulation and laparoscopic oocyte collection. Lab Anim 55, 21–28 (2026). https://doi.org/10.1038/s41684-025-01652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41684-025-01652-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research