Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iminium catalysis in natural Diels–Alderase

Abstract

Iminium-catalysed cycloaddition is one of the most prominent examples of organocatalysis, yet a biological counterpart has not been reported, despite the widespread occurrence of iminium adducts in enzymes. Here we present biochemical, structural and computational evidence for iminium catalysis by the natural Diels–Alderase SdnG, which catalyses norbornene formation in sordarin biosynthesis. A Schiff-base adduct between the ε-nitrogen of active site K127 and the aldehyde group of the enal dienophile is revealed by structural analysis and captured under catalytic conditions via borohydride reduction. This Schiff-base adduct positions the substrate into near-attack conformation and decreases the transition-state barrier of Diels–Alder cyclization by 8.3 kcal mol−1 via dienophile activation. A hydrogen-bond network consisting of a catalytic triad is proposed to facilitate the proton transfer required for iminium formation. This work establishes an intriguing mode of catalysis for Diels–Alderases and points the way to the design of iminium-based (bio)catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SdnG is proposed to be a Diels–Alderase that performs iminium catalysis.
Fig. 2: Crystal structures of SdnG with substrate analogue 3 and product 4.
Fig. 3: Biochemical evidence of iminium catalysis in SdnG.
Fig. 4: Proposed mechanism of SdnG.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the Article, its Supplementary Information files, and the Source Data files. All unique biological materials, such as plasmids, generated in the study are available from the authors upon request. Crystal structures of Se–Met-SdnG, SdnG–3NC, SdnG–3C, SdnG–4 and SdnG–8 have been deposited in the Protein Data Bank under IDs 8YIA, 8YHG, 8YJ4, 8YI8 and 8YHM, respectively. Data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    Article  CAS  Google Scholar 

  3. Gefflaut, T., Blonski, C., Perie, J. & Willson, M. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog. Biophys. Mol. Biol. 63, 301–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Fan, P.-H., Sato, S., Yeh, Y.-C. & Liu, H. Biosynthetic origin of the octose core and its mechanism of assembly during apramycin biosynthesis. J. Am. Chem. Soc. 145, 21361–21369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piersen, C. E., McCullough, A. K. & Lloyd, R. S. AP lyases and dRPases: commonality of mechanism. Mutat. Res. Repair 459, 43–53 (2000).

    Article  CAS  Google Scholar 

  6. Warren, S., Zerner, B. & Westheimer, F. H. Acetoacetate decarboxylase. Identification of lysine at the active site. Biochemistry 5, 817–823 (1966).

    Article  CAS  PubMed  Google Scholar 

  7. Grell, T. A. J., Young, A. P., Drennan, C. L. & Bandarian, V. Biochemical and structural characterization of a Schiff base in the radical-mediated biosynthesis of 4-demethylwyosine by TYW1. J. Am. Chem. Soc. 140, 6842–6852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    Article  PubMed  Google Scholar 

  9. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. List, B., Lerner, R. A. & Barbas, C. F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122, 2395–2396 (2000).

    Article  CAS  Google Scholar 

  11. Garrabou, X., Beck, T. & Hilvert, D. A promiscuous de novo retro-aldolase catalyzes asymmetric Michael additions via Schiff base intermediates. Angew. Chem. Int. Ed. 54, 5609–5612 (2015).

    Article  CAS  Google Scholar 

  12. Xu, G., Crotti, M., Saravanan, T., Kataja, K. M. & Poelarends, G. J. Enantiocomplementary epoxidation reactions catalyzed by an engineered cofactor-independent non-natural peroxygenase. Angew. Chem. Int. Ed. 59, 10374–10378 (2020).

    Article  CAS  Google Scholar 

  13. Kunzendorf, A., Xu, G., Saifuddin, M., Saravanan, T. & Poelarends, G. J. Biocatalytic asymmetric cyclopropanations via enzyme-bound iminium ion intermediates. Angew. Chem. Int. Ed. 60, 24059–24063 (2021).

    Article  CAS  Google Scholar 

  14. Garrabou, X., Wicky, B. I. M. & Hilvert, D. Fast Knoevenagel condensations catalyzed by an artificial Schiff-base-forming enzyme. J. Am. Chem. Soc. 138, 6972–6974 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Garrabou, X., Macdonald, D. S. & Hilvert, D. Chemoselective Henry condensations catalyzed by artificial carboligases. Chem. A Eur. J. 23, 6001–6003 (2017).

    Article  CAS  Google Scholar 

  16. Leveson-Gower, R. B., Zhou, Z., Drienovská, I. & Roelfes, G. Unlocking iminium catalysis in artificial enzymes to create a Friedel-Crafts alkylase. ACS Catal. 11, 6763–6770 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jamieson, C. S., Ohashi, M., Liu, F., Tang, Y. & Houk, K. N. The expanding world of biosynthetic pericyclases: cooperation of experiment and theory for discovery. Nat. Prod. Rep. 36, 698–713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kinsman, A. C. & Kerr, M. A. The total synthesis of (+)-hapalindole Q by an organomediated Diels-Alder reaction. J. Am. Chem. Soc. 125, 14120–14125 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. You, L. et al. Asymmetric total synthesis of propindilactone G. J. Am. Chem. Soc. 137, 10120–10123 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Wilson, R. M., Jen, W. S. & MacMillan, D. W. C. Enantioselective organocatalytic intramolecular Diels-Alder reactions. The asymmetric synthesis of solanapyrone D. J. Am. Chem. Soc. 127, 11616–11617 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bai, Y., Shen, X., Li, Y. & Dai, M. Total synthesis of (−)-spinosyn A via carbonylative macrolactonization. J. Am. Chem. Soc. 138, 10838–10841 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horning, B. D. & MacMillan, D. W. C. Nine-step enantioselective total synthesis of (−)-vincorine. J. Am. Chem. Soc. 135, 6442–6445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fage, C. D. et al. The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nat. Chem. Biol. 11, 256–258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zheng, Q. et al. Enzyme-dependent [4 + 2] cycloaddition depends on Lid-like interaction of the N-terminal sequence with the catalytic core in PyrI4. Cell Chem. Biol. 23, 352–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Sato, M. et al. Catalytic mechanism and endo-to-exo selectivity reversion of an octalin-forming natural Diels–Alderase. Nat. Catal. 4, 223–232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, Y. et al. Structural basis for stereoselective dehydration and hydrogen-bonding catalysis by the SAM-dependent pericyclase LepI. Nat. Chem. 11, 812–820 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, Z., Jamieson, C. S., Ohashi, M., Houk, K. N. & Tang, Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels–Alderase. Nat. Commun. 13, 2568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, S. H. et al. Biosynthesis of sordarin revealing a Diels-Alderase for the formation of the norbornene skeleton. Angew. Chem. 61, e202205577 (2022).

    Article  CAS  Google Scholar 

  29. Eberhardt, R. Y. et al. Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics 14, 327 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, B. et al. Enzyme-catalysed [6 + 4] cycloadditions in the biosynthesis of natural products. Nature 568, 122–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drulyte, I. et al. Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase. IUCrJ 6, 1120–1133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niwa, K. et al. Biosynthesis of polycyclic natural products from conjugated polyenes via tandem isomerization and pericyclic reactions. J. Am. Chem. Soc. 145, 13520–13525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Northrup, A. B. & MacMillan, D. W. C. The first general enantioselective catalytic Diels-Alder reaction with simple α,β-unsaturated ketones. J. Am. Chem. Soc. 124, 2458–2460 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ozanne, A., Pouységu, L., Depernet, D., François, B. & Quideau, S. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers. Org. Lett. 5, 2903–2906 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Bullock, T. L., Clarkson, D. W., Kent, H. M. & Stewart, M. The 1.6 Å resolution crystal structure of Nuclear Transport Factor 2 (NTF2). J. Mol. Biol. 260, 422–431 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, J., Zhou, Y., Tanaka, I. & Yao, M. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26, 46–52 (2010).

    Article  PubMed  Google Scholar 

  37. Torosantucci, R., Schöneich, C. & Jiskoot, W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm. Res. 31, 541–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, J., Cassidy, C. S. & Frey, P. A. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Biochemistry 37, 11940–11948 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Crugeiras, J., Rios, A., Riveiros, E. & Richard, J. P. Substituent effects on the thermodynamic stability of imines formed from glycine and aromatic aldehydes: implications for the catalytic activity of pyridoxal-5′-phosphate. J. Am. Chem. Soc. 131, 15815–15824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thadani, A. N., Stankovic, A. R. & Rawal, V. H. Enantioselective Diels-Alder reactions catalyzed by hydrogen bonding. Proc. Natl Acad. Sci. USA 101, 5846–5850 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Minami, A. & Oikawa, H. Recent advances of Diels-Alderases involved in natural product biosynthesis. J. Antibiot. 69, 500–506 (2016).

    Article  Google Scholar 

  43. Byrne, M. J. et al. The catalytic mechanism of a natural Diels-Alderase revealed in molecular detail. J. Am. Chem. Soc. 138, 6095–6098 (2016).

    Article  PubMed  Google Scholar 

  44. Zheng, Q. et al. Structural insights into a flavin-dependent [4 + 2] cyclase that catalyzes trans-decalin formation in pyrroindomycin biosynthesis. Cell Chem. Biol. 25, 718–727.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. van der Helm, M. P., Klemm, B. & Eelkema, R. Organocatalysis in aqueous media. Nat. Rev. Chem. 3, 491–508 (2019).

    Article  Google Scholar 

  46. Kuatsjah, E. et al. Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless deformylation. Proc. Natl Acad. Sci. USA 120, e2212246120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohashi, M. et al. An enzymatic Alder-ene reaction. Nature 586, 64–69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J. et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science 360, 1438–1442 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lubkoll, J. & Wennemers, H. Mimicry of polyketide synthases—enantioselective 1,4-addition reactions of malonic acid half-thioesters to nitroolefins. Angew. Chem. Int. Ed. 46, 6841–6844 (2007).

    Article  CAS  Google Scholar 

  51. Zheng, L., Baumann, U. & Reymond, J.-L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu, H. & Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gasteiger, E. et al. in The Proteomics Protocols Handbook (ed. Walker, J.) 571–607 (Humana Press, 2005).

  54. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  55. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DeLano, W. L. PyMOL: an open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40, 11 (2002).

    Google Scholar 

  61. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res. 38, W695–W699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, Inc., 2016).

  65. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures and electronic properties of molecules in solution with the C-PCM Solvation Model. J. Comput. Chem. 24, 669–681 (2003).

    Article  PubMed  Google Scholar 

  66. Li, Y.-P., Gomes, J., Mallikarjun Sharada, S., Bell, A. T. & Head-Gordon, M. Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015).

    Article  CAS  Google Scholar 

  67. Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Luchini, G., Alegre-Requena, J. V., Funes-Ardoiz, I. & Paton, R. S. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Res. 9, 291 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH (5R01AI141481, to Y.T.), Shenzhen Bay Laboratory Open Program (SZBL2021080601014, to J.Z.) and the NSF (CHE 2153972 and 2409941, to K.N.H.). We thank the staff of beamlines BL17U1, BL18U1 and BL19U1 of Shanghai Synchrotron Radiation Facility for access and help with the X-ray data collection, D. Cascio and M. Sawaya at UCLA-DOE Institute for Genomics and Proteomics for help with discussion of the X-ray data, and Y. Chen at UCLA Molecular Instrumentation Center for help with the peptide MS/MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.S., X.Z., Q.Z., M.O., K.N.H., J.Z. and Y.T. developed the hypothesis and designed the study. Z.S. performed compound isolation, chemical synthesis and all biochemical studies. X.Z. performed crystallization and determined all structures. Q.Z. performed all computational studies. Z.S., X.Z., Q.Z., M.O., K.N.H., J.Z. and Y.T. analysed and discussed the results. Z.S. and Y.T. wrote the manuscript. Z.S., X.Z., Q.Z., M.O., K.N.H., J.Z. and Y.T. read, edited and approved the manuscript.

Corresponding authors

Correspondence to K. N. Houk, Jiahai Zhou or Yi Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jan Deska, Hui Ming Ge, Shingo Nagano, Masanobu Uchiyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The active sites of SdnG complexed with different ligands are nearly superimposable.

(a) Overlay of active sites of SdnG-3NC (ivory) and SdnG-3C (gray). Noncovalently bound 3 and covalently bound 3 are shown in cyan and green respectively. Water molecules interacting with 3 and Y41 are omitted for clarity. (b) Overlay of active sites of SdnG-3NC (ivory) and SdnG-4NC (gray). 3 and 4 are shown in cyan and green respectively. (c) Overlay of active sites of SdnG-3C (ivory) and SdnG-7 (gray). Covalently bound 3 and adduct 7 are shown in cyan and green respectively.

Extended Data Fig. 2 K127 adducts corresponding to the rDA and Cope rearrangement products of intermediate 7 were observed in the crystal structure of SdnG with 4.

(a) Active site of SdnG-7-5 (the rDA product of 7, chain C of SdnG-4, PDB 8YI8). Adducts 7 and 5 are shown in cyan and green respectively. Residues around 4 Å of the ligands are shown in ivory. The Polder omit map of 7-5 (contoured at 2.0 σ) is shown in blue mesh. Maps contoured at higher levels (2.5 σ and 3.0 σ) are shown in Supplementary Fig. 12. (b) Distance between diene and dienophile (highlighted in purple) of 5 in SdnG-7-5. Active site residues and 5 are shown in ivory and green respectively. Adduct 7 is omitted from the view for clarity. (c) Active site of SdnG-8 (the Cope rearrangement product of 7, PDB 8YHM). Adduct 8 is shown in cyan. The Polder omit map of 8 (blue mash) is contoured at 3.0 σ. Distances between atoms are shown in dashed lines. Bonds corresponding to the diene and the dienophile in 1 are highlighted in purple. Other coloring schemes are the same as in (a). (d) DFT-calculated transition states of rDA and Cope rearrangement of 7. All energies are relative to the ground state energy of 5 (iminium form). Bonds corresponding to the diene and the dienophile in 1 are highlighted in blue in 5 and green in 8. The transition state structure of rDA (TS-5) is the same as that of the forward reaction (TS-4). But the barriers of the forward and reverse reactions differ substantially due to the large energy gap between 5 and 7.

Extended Data Fig. 3 Catalytic activity of SdnG and K127X mutants.

All reactions were carried out for 1 min with 100 µM 1. Values and error bars are obtained from the average and standard deviation of three independent measurements (black circles) respectively (n = 3). (a) Absolute rates of non-enzymatic and enzymatic DA cyclization of 1. Asterisks indicate no measurable substrate consumption during the course of the reaction. (b) Relative activity of SdnG and K127X variants normalized by enzyme concentration. All activities are shown relative to the rate acceleration of the DA reaction exhibited by the wild-type enzyme (WT, 100%). A 0% value (asterisks) indicates no rate acceleration compared to uncatalyzed DA reaction.

Source data

Extended Data Fig. 4 Effect of the concentration of 4 on formation of iminium 7 in SdnG and the H72A variant.

SdnG or its mutational variants (5 µM) were mixed with varied amounts of 4 and the mixture was immediately treated with 20 mM NaBH4. The reaction was subsequently analyzed by UHPLC-HRMS and the deconvoluted ESI-MS spectra were shown in the figure. Increased concentration of 4 promotes imine formation of SdnG but not the H72A variant. The result suggests that ligand binding is rate-determining for iminium formation in SdnG but not in the H72A variant. Therefore, diminished iminium formation in H72A is not a result of compromised ligand binding.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–20, cartesian coordinates of calculated structures and source data.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Fig. 16.

Supplementary Data 2

Cartesian coordinates of calculated structures.

Source data

Source Data Fig. 3d

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zang, X., Zhou, Q. et al. Iminium catalysis in natural Diels–Alderase. Nat Catal 8, 218–228 (2025). https://doi.org/10.1038/s41929-025-01294-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01294-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing