Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Human class B1 GPCR modulation by plasma membrane lipids
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Human class B1 GPCR modulation by plasma membrane lipids

  • Kin W. Chao1,2 nAff4,
  • Linda Wong3,
  • Affiong I. Oqua3,
  • Jas Kalayan  ORCID: orcid.org/0000-0002-6833-18642,
  • Yusman Manchanda3,
  • James Gebbie-Rayet  ORCID: orcid.org/0000-0001-8271-34312,
  • George Hedger  ORCID: orcid.org/0009-0002-2499-06621,
  • Alejandra Tomas  ORCID: orcid.org/0000-0002-2290-84533 &
  • …
  • Sarah L. Rouse  ORCID: orcid.org/0000-0002-7115-15651 

Communications Biology , Article number:  (2026) Cite this article

  • 1538 Accesses

  • 1 Citations

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Molecular biology
  • Molecular modelling

Abstract

The class B1 G protein-coupled receptor (GPCR) subfamily is a class of receptors known for their regulatory roles in metabolism and neuronal activity and as important drug targets. Lipids play key functional roles in modulation of GPCR signalling, yet our understanding of the molecular level detail of specific lipid interactions with class B1 GPCRs remains limited. Here we present coarse-grained molecular dynamics (MD) simulations of the active and inactive states of 15 human class B1 family members and use aiida-gromacs to capture full provenance for the set-up of simulations in complex plasma membranes. Receptors exhibit state-dependent lipid interactions with the regulatory sterol cholesterol and phospholipid phosphatidylinositiol-3,4-bisphosphate (PIP2) at defined locations on the receptor surface. Global analysis of trends across the subfamily reveals conserved patterns of lipid interaction dynamics. The glycosphingolipid GM3 exerts a modulatory influence on the dynamics of class B1 extracellular domains in both simulations and in vitro time-resolved FRET assays.

Similar content being viewed by others

Lipids modulate the dynamics of GPCR:β-arrestin interaction

Article Open access 29 May 2025

Allosteric modulation of ghrelin receptor signaling by lipids

Article Open access 24 June 2021

Cholesterol as a modulator of cannabinoid receptor CB2 signaling

Article Open access 12 February 2021

Data availability

All data are available in the main text or the supplementary materials. Additional data including raw data for plots presented has been deposited on Zenodo: https://doi.org/10.5281/zenodo.1435905691; https://doi.org/10.5281/zenodo.1472841492.

References

  1. Cong, Z. et al. Structural perspective of class B1 GPCR signaling. Trends Pharmacol. Sci. 43, 321–334 (2022).

  2. Karageorgos, V. et al. Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones 17, 45–59 (2018).

  3. Cary, B. P. et al. New insights into the structure and function of class B1 GPCRs. Endocrine Rev. 44, 492–517 (2023).

  4. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: Structures in motion. Chem. Rev.117, 139–155 (2017).

  5. Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).

  6. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    Google Scholar 

  7. Yeagle, P. L. Non-covalent binding of membrane lipids to membrane proteins. Biochimica et Biophysica Acta - Biomembranes 1838, 1548–59 (2014).

  8. Byrne, E. F. X. et al. Structural basis of Smoothened regulation by its extracellular domains. Nature 535, 517-522 (2016).

  9. Oates, J. & Watts, A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21, 802–7 (2011).

  10. Kiriakidi, S. et al. Effects of cholesterol on GPCR function: Insights from computational and experimental studies. Adv. Exp. Med. Biol. 1135, 89–103 (2019).

  11. Janetzko, J. et al. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 185, 4560–4573 (2022).

  12. Ansell, T. B., Song, W. & Sansom, M. S. P. The glycosphingolipid GM3 modulates conformational dynamics of the glucagon receptor. Biophys. J. 119, 300–313 (2020).

  13. Hedger, G. & Yen, H.-Y. The influence of phosphoinositide lipids in the molecular biology of membrane proteins: recent insights from simulations. J. Mol. Biol. 437, 168937 (2025).

  14. Pluhackova, K., Gahbauer, S., Kranz, F., Wassenaar, T. A. & Böckmann, R. A. Dynamic cholesterol-conditioned dimerization of the G protein coupled chemokine receptor type 4. PLoS Comput. Biol. 12, e1005169 (2016).

  15. Guixà-González, R. et al. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci. Rep. 6, 19839 (2016).

  16. Dawaliby, R. et al. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat. Chem. Biol. 12, 35–9 (2016).

  17. Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).

  18. Oqua, A. I. et al. Molecular mapping and functional validation of GLP-1R cholesterol binding sites in pancreatic beta cells. Elife 13, RP101011 (2024).

  19. Buenaventura, T. et al. Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biol. 17, e3000097 (2019).

  20. Cheng, Y. Membrane protein structural biology in the era of single particle cryo-EM. Curr. Opin. Struct. Biol. 52, 58–63 (2018).

  21. Zhang, M. et al. G protein-coupled receptors (GPCRs): Advances in structures, mechanisms and drug discovery. Signal Transduct. Target Ther. 9, 88 (2024).

    Google Scholar 

  22. Souza, P. C. T. et al. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021).

  23. Han, X. & Gross, R. W. The foundations and development of lipidomics. J. Lipid Res. 63, 100164 (2022).

  24. Páll, S. et al. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 153, 134110 (2020).

  25. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  26. Heo, L. & Feig, M. Multi-state modeling of G-protein coupled receptors at experimental accuracy. Proteins: Struct. Funct. Bioinf. 90, 1873–1885 (2022).

  27. Discovery, C. et al. Chai-1: Decoding the molecular interactions of life. bioRxiv https://doi.org/10.1101/2024.10.10.615955 (2024).

  28. Bereau, T., Walter, L. J. & Rudzinski, J. F. Martignac: Computational workflows for reproducible, traceable, and composable coarse-grained martini simulations. J. Chem. Inf. Model 64, 9413–9423 (2024).

  29. Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020).

  30. Song, W. et al. PyLipID: A python package for analysis of protein-lipid interactions from molecular dynamics simulations. J. Chem. Theory Comput. 18, 1188–1201 (2022).

  31. Wang, X. et al. Molecular insights into differentiated ligand recognition of the human parathyroid hormone receptor 2. Proc. Natl. Acad. Sci. USA 118, e2101279118 (2021).

  32. Duan, J. et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat. Commun 11, 4121 (2020).

  33. Cao, J. et al. A structural basis for amylin receptor phenotype. Science (1979) 375, eabm9609 (2022).

  34. Zhou, F. et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun 11, 5205 (2020).

  35. Zhao, F. et al. Structural insights into hormone recognition by the human glucosedependent insulinotropic polypeptide receptor. Elife 10, e68719 (2021).

  36. Zhao, L. H. et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science (1979) 364, 148–153 (2019).

  37. Ma, S. et al. Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Mol Cell 77, 669–680 (2020).

  38. Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl. Acad. Sci. USA 110, 5211–6 (2013).

  39. Genheden, S., Essex, J. W. & Lee, A. G. G protein coupled receptor interactions with cholesterol deep in the membrane. Biochim. Biophys. Acta Biomembr. 1859, 268–281 (2017).

  40. Guixà-González, R. et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun 8, 14505 (2017).

  41. Morra, G., Razavi, A. M., Menon, A. K. & Khelashvili, G. Cholesterol occupies the lipid translocation pathway to block phospholipid scrambling by a G protein-coupled receptor. Structure 30, 1208–1217 (2022).

  42. Sejdiu, B. I. & Tieleman, D. P. Lipid-protein interactions are a unique property and defining feature of G protein-coupled receptors. Biophys. J. 118, 1887–1900 (2020).

  43. Gater, D. L. et al. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophys. J. 107, 2305–12 (2014).

  44. Aranda-García, D. et al. Large scale investigation of GPCR molecular dynamics data uncovers allosteric sites and lateral gateways. Nat. Commun 16, 2020 (2025).

  45. Hedger, G. & Sansom, M. S. P. Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations. Biochim Biophys Acta Biomembr 1858, 2390–2400 (2016).

  46. Hu, J. et al. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 630, 509–515 (2024).

    Google Scholar 

  47. Vickery, O. N. & Stansfeld, P. J. CG2AT2: an Enhanced Fragment-Based Approach for Serial Multi-scale Molecular Dynamics Simulations. J. Chem. Theory Comput 17, 6472–6482 (2021).

    Google Scholar 

  48. Jo, S., Rui, H., Lim, J. B., Klauda, J. B. & Im, W. Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. J. Phys. Chem. B 114, 13342–13348 (2010).

    Google Scholar 

  49. Pedersen, K. B. et al. The Martini 3 lipidome: Expanded and refined parameters improve lipid phase behavior. ACS Cent. Sci. 11 1598–1610 (2025).

  50. Cox, T. M. Eliglustat tartrate, an orally active glucocerebroside synthase inhibitor for the potential treatment of Gaucher disease and other lysosomal storage diseases. Curr. Opin. Investig. Drugs 11, 1169–81 (2010).

  51. Chiu, P.-L., Orjuela, J. D., de Groot, B. L., Aponte Santamaría, C. & Walz, T. Structure and dynamics of cholesterol-mediated aquaporin-0 arrays and implications for lipid rafts. Elife 12, RP90851 (2024).

    Google Scholar 

  52. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).

    Google Scholar 

  53. Damian, M. et al. Allosteric modulation of ghrelin receptor signaling by lipids. Nat. Commun 12, 3938 (2021).

  54. Kjølbye, L. R. et al. Lipid Modulation of a Class B GPCR: Elucidating the Modulatory Role of PI(4,5)P2 Lipids. J. Chem. Inf. Model 62, 6788–6802 (2022).

  55. Thakur, N. et al. Anionic phospholipids control mechanisms of GPCR-G protein recognition. Nat. Commun 14, 794 (2023).

  56. Huang, W. et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579, 303–308 (2020).

  57. Gomes, A. A. S. et al. Lipids modulate the dynamics of GPCR:β-arrestin interaction. Nature. Communications 16, 4982 (2025).

    Google Scholar 

  58. Zhang, H. et al. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546, 259–264 (2017).

  59. Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–7 (2016).

  60. Sun, B. et al. Structural determinants of dual incretin receptor agonism by tirzepatide. Proc. Natl. Acad. Sci. USA 119, e2116506119 (2022).

  61. Tiemann, J. K. et al. MDverse, shedding light on the dark matter of molecular dynamics simulations. Elife 12, RP90061 (2024).

  62. Cong, Z. et al. Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with Gs proteins. Cell Discov. 10, 18 (2024).

  63. Knapp, B., Ospina, L. & Deane, C. M. Avoiding false positive conclusions in molecular simulation: The importance of replicas. J. Chem. Theory Comput. 14, 6127–6138 (2018).

  64. Sexton, R., Fazel, M., Schweiger, M., Pressé, S. & Beckstein, O. Bayesian nonparametric analysis of residence times for protein-lipid interactions in molecular dynamics simulations. J. Chem. Theory Comput. 21, 4203–4220 (2025).

    Google Scholar 

  65. Hay, D. L. & Pioszak, A. A. Receptor activity-modifying proteins (RAMPs): New insights and roles. Annu. Rev. Pharmacol. Toxicol. 56, 469–87 (2016).

  66. Chetverikov, N., Janoušková-Randáková, A., Nelic, D. & Jakubík, J. Cholesterol differentially modulates the activity of opioid and muscarinic receptors via a common binding site. Biochem Pharm. 242, 117296 (2025).

    Google Scholar 

  67. Naglekar, A., Chattopadhyay, A. & Sengupta, D. Palmitoylation of the glucagon-like peptide-1 receptor modulates cholesterol interactions at the receptor–lipid microenvironment. J. Phys. Chem. B 127, 11000–11010 (2023).

    Google Scholar 

  68. Pándy-Szekeres, G. et al. GPCRdb in 2023: State-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 51, D395–D402 (2023).

  69. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Google Scholar 

  70. Park, S. J., Kern, N., Brown, T., Lee, J. & Im, W. CHARMM-GUI PDB Manipulator: Various PDB structural modifications for biomolecular modeling and simulation. J. Mol. Biol. 435, 167995 (2023).

  71. Berman, M.H. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Google Scholar 

  72. Kroon, P. C. et al. Martinize2 and Vermouth: Unified framework for topology generation. Elife 12, RP90627 (2023).

  73. Periole, X., Cavalli, M., Marrink, S. J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–43 (2009).

  74. Lomize, A. L., Todd, S. C. & Pogozheva, I. D. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci. 31, 209–220 (2022).

  75. Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P. & Marrink, S. J. Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 11, 2144–55 (2015).

  76. Song, W., Yen, H. Y., Robinson, C. V. & Sansom, M. S. P. State-dependent lipid interactions with the A2a receptor revealed by MD simulations using in vivo-mimetic membranes. Structure 27, 392–403 (2019).

  77. Borges-Araújo, L., Souza, P. C. T., Fernandes, F. & Melo, M. N. Improved parameterization of phosphatidylinositide lipid headgroups for the martini 3 coarse-grain force field. J. Chem. Theory Comput. 18, 357–373 (2022).

  78. Borges-Araújo, L. et al. Martini 3 coarse-grained force field for cholesterol. J Chem Theory Comput 19, 7387–7404 (2023).

  79. Qi, Y. et al. CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 11, 4486–94 (2015).

  80. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Google Scholar 

  81. Parrinello, M. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl Phys. 52, 7182 (1981).

    Google Scholar 

  82. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

  83. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph 14, 27–28 (1996).

    Google Scholar 

  84. Schrödinger LLC. The PyMOL Molecular Graphics System, Version~1.8. (2015).

  85. Cohen, J., Arkhipov, A., Braun, R. & Schulten, K. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys. J. 91, 1844–57 (2006).

  86. Huang, J. & Mackerell, A. D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–45 (2013).

  87. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

  88. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A (Coll Park) 31, 1695–1697 (1985).

  89. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993).

    Google Scholar 

  90. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput Chem. 18, 1463–1472 (1997).

    Google Scholar 

  91. Kalayan, J., Chao, K., Rouse, S. & Gebbie-Rayet, J. Coarse-grained MD simulation provenance of membrane embedded GPCR using GROMACS and aiida-gromacs. https://doi.org/10.5281/ZENODO.14359056.

  92. Chao, K., Kalayan, J., Gebbie-Rayet, J. & Rouse, S. Dataset supporting the publication of Human class B1 GPCR modulation by plasma membrane lipids. https://doi.org/10.5281/ZENODO.15619266.

  93. Kim, S. et al. PubChem 2023 update. Nucleic Acids Res. 51, D1373–D1380 (2023).

  94. Barneda, D., Cosulich, S., Stephens, L. & Hawkins, P. How is the acyl chain composition of phosphoinositides created and does it matter? Biochem. Soc. Trans. 47, 1291–1305 (2019).

  95. Shayman, J. A., Hinkovska-Galcheva, V. & Shu, L. Inhibitors of glucosylceramide synthase. in Methods Mol. Biol. 2613, 271–288 (2023).

  96. Klymchenko, A. S. Fluorescent probes for lipid membranes: From the cell surface to organelles. Acc Chem. Res. 56, 1–12 (2023).

  97. Lucey, M. et al. Acylation of the incretin peptide exendin-4 directly impacts glucagon-like peptide-1 receptor signaling and traffickings. Mol. Pharmacol 100, 319–334 (2021).

Download references

Acknowledgements

We thank Joseph Barritt for helpful discussion. This work was supported by the following grants: UKRI Future Leaders Fellowship (MR/Y01975X/1): S.L.R.; MRC Project Grant (MR/X021467/1): A.T. (Y.M.); Wellcome Trust Discovery Award (301619/Z/23/Z): A.T. (A.I.O.), S.L.R. (G.H.)

Author information

Author notes
  1. Kin W. Chao

    Present address: School of Chemistry and Chemical Engineering, University of Southampton, Southampton, UK

Authors and Affiliations

  1. Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, UK

    Kin W. Chao, George Hedger & Sarah L. Rouse

  2. Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, UK

    Kin W. Chao, Jas Kalayan & James Gebbie-Rayet

  3. Department of Metabolism, Digestion and Reproduction,Section of Cell Biology and Functional Genomics, Imperial College London, London, UK

    Linda Wong, Affiong I. Oqua, Yusman Manchanda & Alejandra Tomas

Authors
  1. Kin W. Chao
    View author publications

    Search author on:PubMed Google Scholar

  2. Linda Wong
    View author publications

    Search author on:PubMed Google Scholar

  3. Affiong I. Oqua
    View author publications

    Search author on:PubMed Google Scholar

  4. Jas Kalayan
    View author publications

    Search author on:PubMed Google Scholar

  5. Yusman Manchanda
    View author publications

    Search author on:PubMed Google Scholar

  6. James Gebbie-Rayet
    View author publications

    Search author on:PubMed Google Scholar

  7. George Hedger
    View author publications

    Search author on:PubMed Google Scholar

  8. Alejandra Tomas
    View author publications

    Search author on:PubMed Google Scholar

  9. Sarah L. Rouse
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.W.C., G.H., S.L.R., A.T., J.G.R., J.K.. Methodology: K.W.C., L.W., J.K., A.T.. Investigation: K.W.C., L.W., G.H., S.L.R., Y.M., A.I.O.. Visualization: K.W.C., L.W., G.H., S.L.R., A.T., A.I.O., Y.M.. Supervision: G.H., A.T., J.G.R., S.L.R.. Writing—original draft: K.W.C., G.H., J.K., J.G.R., A.T., S.L.R.. Writing—review & editing: L.W., A.I.O., J.K., J.G.R., G.H., A.T., S.L.R.

Corresponding authors

Correspondence to George Hedger, Alejandra Tomas or Sarah L. Rouse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. EBM: Professor Michal Kolář. Primary Handling Editors: Dr. Nilanjan Banerjee and Dr. Laura Rodriguez Perez. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, K.W., Wong, L., Oqua, A.I. et al. Human class B1 GPCR modulation by plasma membrane lipids. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09445-2

Download citation

  • Received: 12 January 2025

  • Accepted: 18 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09445-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing