Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
A chromosome-level genome assembly and multi-omics analyses provide insights into the biosynthesis of piperlongumine in Piper sarmentosum
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 January 2026

A chromosome-level genome assembly and multi-omics analyses provide insights into the biosynthesis of piperlongumine in Piper sarmentosum

  • Yongjian Luo  ORCID: orcid.org/0000-0002-3788-524X1,2,3,
  • Ru Wang2,
  • Yixin Zhang2,
  • Yuejiao Wang2,4,
  • Jun Liu2 &
  • …
  • Yiqiang Wang1,3 

Communications Biology , Article number:  (2026) Cite this article

  • 1162 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genome duplication

Abstract

Piper sarmentosum Roxb. is a significant medicinal and edible plant, and its active compound piperlongumine (PL) has garnered attention due to its pharmacological activities, including anticancer and anti-inflammatory effects. However, the key enzymes and regulatory mechanisms of its biosynthetic pathway are not yet fully understood. In this study, we generated a chromosome-level genome assembly, with a contig N50 of 15.36 Mb and a scaffold N50 of 22.52 Mb. The BUSCO assessment indicated high completeness, with a score of 97.4%. Genome annotation revealed 39,154 protein-coding genes and identified three lineage-specific whole-genome duplication (WGD) events that expanded gene families associated with alkaloid biosynthesis. Metabolomic analysis identified 4,456 metabolites, including 238 alkaloids, and demonstrated that flowers and fruits are the primary organs for PL biosynthesis. Molecular docking and the correlation of gene expression with levels of PL suggest that PsHCT1 catalyzes the condensation of sinapoyl-CoA and 5,6-dihydropyridinone, while PsCCoAOMT1 is responsible for the final synthesis of PL. This study provides insights into the mechanism of alkaloid biosynthesis in P. sarmentosum and may help lay the groundwork for enhancing the production of medicinal compounds.

Similar content being viewed by others

Tissue-specific variations of piperine in ten populations of Piper longum L.: bioactivities and toxicological profile

Article Open access 01 March 2024

Chromosome-level genome and annotation of the tetraploid Rhodiola kirilowii

Article Open access 14 April 2025

De novo chromosome-level genome assembly of Chinese motherwort (Leonurus japonicus)

Article Open access 09 January 2024

Data availability

All the genome assembly and annotation files generated in this study have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject accession number PRJNA1289360. The genome assembly files have been deposited in NCBI under accession number PRJNA1265616. The complete genome annotation files have been uploaded to the public database Figshare and can be accessed via the following link: https://doi.org/10.6084/m9.figshare.30404920.v1. The untargeted metabolomics raw data used in this study are available in the MetaboLights database under accession number MTBLS13523, and can be accessed via the following link: https://www.ebi.ac.uk/metabolights/MTBLS13523. The source data for Fig. 1 has been uploaded to NCBI and can be accessed in the Methods section for reproducibility. The source files for Fig. 2A-D are in Supplementary Data S5-S9. The data for Fig. 2E, F can be obtained by downloading the genomic files shown in the figures. The source files for Fig. 3 are in Supplementary Data S10-S11, and those for Fig. 4 are in Supplementary Data S12. The WGCNA result files, uncropped images for subcellular localization, and molecular docking simulation data, which are included in Fig. 5, have been uploaded to the public database Figshare and can be accessed via the following link: https://doi.org/10.6084/m9.figshare.30404920.v1. The species protein data used in Fig. 2A is also available on Figshare.

Code availability

The software and parameters used in this study are described in the Methods section. No specific custom codes or scripts were utilized. Data processing was conducted according to the manuals and protocols provided with the respective software.

References

  1. Shao, J., Liu, Y., Lv, J. & Chen, X. Alkaloid components in piper sarmentosum leaves. Nat. Prod. Res. Dev. 35, 231–235 (2023).

    Google Scholar 

  2. Sun, X. et al. Piper sarmentosum Roxb.: a review on its botany, traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 263, 112897 (2020).

    Google Scholar 

  3. de Azevedo, R. A. et al. Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 68, 113–119 (2015).

    Google Scholar 

  4. Bokesch, H. R. et al. A new hypoxia inducible factor-2 inhibitory pyrrolinone alkaloid from roots and stems of Piper sarmentosum. Chem. Pharm. Bull. (Tokyo) 59, 1178–1179 (2011).

    Google Scholar 

  5. Jyothi, D. et al. Diferuloylmethane augments the cytotoxic effects of piplartine isolated from Piper chaba. Toxicol. Vitr. 23, 1085–1091 (2009).

    Google Scholar 

  6. Gundala, S. R. et al. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol. Appl Pharm. 280, 86–96 (2014).

    Google Scholar 

  7. Salehi, B. et al. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules 24, 1364 (2019).

    Google Scholar 

  8. A Dictionary of the Economic Products of the Malay Peninsula. Nature 137, 255–255 (1936).

  9. Abdul Rahman, N., Ku Mohd Noor, K. M., Suhaimi, F., Kutty, M. & Sinor, M. Z. Piper sarmentosum influences the oxidative stress involved in experimental diabetic rats. Internet J. Herb. Plant Med. 1, 1203 (2011).

  10. Chaveerach, A., Mokkamul, P., Sudmoon, R. & Tanee, T. Ethnobotany of the Genus Piper (Piperaceae) in Thailand. Ethnobot. Res. Appl. 4, 233 (2006).

    Google Scholar 

  11. Othman, L., Sleiman, A. & Abdel-Massih, R. M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 10, 911 (2019).

    Google Scholar 

  12. Cai, Y.-Z. et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78, 2872–2888 (2006).

    Google Scholar 

  13. Ware, I. et al. Comparative metabolite analysis of Piper sarmentosum organs approached by LC–MS-based metabolic profiling. Nat. Prod. Bioprospect. 14, 30 (2024).

    Google Scholar 

  14. Baliza, I. R. S. et al. Ruthenium complexes with piplartine cause apoptosis through MAPK Signaling by a p53-dependent pathway in human colon carcinoma cells and inhibit tumor development in a xenograft model. Front Oncol. 9, 582 (2019).

    Google Scholar 

  15. Niu, M. et al. Piperlongumine is a novel nuclear export inhibitor with potent anticancer activity. Chem. Biol. Interact. 237, 66–72 (2015).

    Google Scholar 

  16. Parama, D. et al. The promising potential of piperlongumine as an emerging therapeutics for cancer. Explor Target Antitumor Ther. 2, 323–354 (2021).

    Google Scholar 

  17. Choudhary, N. & Singh, V. A census of P. longum’s phytochemicals and their network pharmacological evaluation for identifying novel drug-like molecules against various diseases, with a special focus on neurological disorders. PLoS One 13, e0191006 (2018).

    Google Scholar 

  18. Bezerra, D. P. et al. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci. 48, 453–463 (2013).

    Google Scholar 

  19. Fincher, R. M. et al. Inter- and intraspecific comparisons of antiherbivore defenses in three species of rainforest understory shrubs. J. Chem. Ecol. 34, 558–574 (2008).

    Google Scholar 

  20. Peeck, L. H., Leuthäusser, S. & Plenio, H. Switched stereocontrol in Grubbs−Hoveyda complex catalyzed ROMP utilizing proton-switched NHC ligands. Organometallics 29, 4339–4345 (2010).

    Google Scholar 

  21. Rosen, E. L., Sung, D. H., Chen, Z., Lynch, V. M. & Bielawski, C. W. Olefin metathesis catalysts containing acyclic diaminocarbenes. Organometallics 29, 250–256 (2010).

    Google Scholar 

  22. Blum, A. P., Ritter, T. & Grubbs, R. H. Synthesis of N-heterocylic carbene-containing metal complexes from 2-(Pentafluorophenyl)imidazolidines. Organometallics 26, 2122–2124 (2007).

    Google Scholar 

  23. Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).

    Google Scholar 

  24. Süssner, M. & Plenio, H. pi-Face donor properties of N-heterocyclic carbenes. Chem. Commun. 21, 5417–5419 (2005).

  25. Hua, D. H., Miao, S. W., Bharathi, S. N., Katsuhira, T. & Bravo, A. A. Selective nucleophilic addition reactions of alkyllithium reagents with N-(trimethylsilyl)lactams. Synthesis of cyclic ketimines. J. Org. Chem. 55, 3682–3684 (1990).

    Google Scholar 

  26. Tian, D.-S., Zhang, X. & Cox, R. J. Comparing total chemical synthesis and total biosynthesis routes to fungal specialized metabolites. Nat. Prod. Rep. 42, 720–738 (2025).

    Google Scholar 

  27. Liu, W., Hong, B., Wang, J. & Lei, X. New strategies in the efficient total syntheses of polycyclic natural products. Acc. Chem. Res. 53, 2569–2586 (2020).

    Google Scholar 

  28. Sivaranjani, R., George, J. K. & Saji, K. V. Evaluation of chemo-diversity in major Piper species for three piperamides using validated RP-HPLC method. Genet. Resour. Crop Evol. 66, 1635–1641 (2019).

    Google Scholar 

  29. Parmar, V. S. et al. Phytochemistry of the genus Piper. Phytochemistry 46, 597–673 (1997).

    Google Scholar 

  30. Hu, L. et al. The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nat. Commun. 10, 4702 (2019).

    Google Scholar 

  31. Mathew, D. & Valsalan, R. The draft genome of Piper longum L. Crop Sci. 64, 2854–2862 (2024).

    Google Scholar 

  32. Zhang, L. et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 10, 1494 (2019).

    Google Scholar 

  33. Zhang, S.-J., Liu, L., Yang, R. & Wang, X. Genome size evolution mediated by gypsy retrotransposons in brassicaceae. Genomics, Proteom. Bioinforma. 18, 321–332 (2020).

    Google Scholar 

  34. Zhou, S.-S. et al. A comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes. Sci. Data 8, 174 (2021).

    Google Scholar 

  35. Clark, J. W. & Donoghue, P. C. J. Whole-Genome Duplication and Plant Macroevolution. Trends Plant Sci. 23, 933–945 (2018).

    Google Scholar 

  36. Qin, L. et al. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat. Plants 7, 1239–1253 (2021).

    Google Scholar 

  37. Wang Y. Metabolomics-based Resource Identification of Six Piper spp. Resources Quality Identification. (Hainan University, 2023).

  38. Lv, Y. et al. Metabolome profiling and transcriptome analysis filling the early crucial missing steps of piperine biosynthesis in Piper nigrum L. Plant J. 117, 107–120 (2024).

    Google Scholar 

  39. Schnabel, A. et al. Identification and characterization of piperine synthase from black pepper, Piper nigrum L. Commun. Biol. 4, 1–10 (2021).

    Google Scholar 

  40. Jäckel, L. et al. The terminal enzymatic step in piperine biosynthesis is co-localized with the product piperine in specialized cells of black pepper (Piper nigrum L. Plant J. 111, 731–747 (2022).

    Google Scholar 

  41. Liu, C. et al. Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC Plant Biol. 20, 14 (2020).

    Google Scholar 

  42. Liu, Z. et al. Uncovering the role of hydroxycinnamoyl transferase in boosting chlorogenic acid accumulation in carthamus tinctorius cells under methyl jasmonate elicitation. Int J. Mol. Sci. 25, 2710 (2024).

    Google Scholar 

  43. Bassard, J.-E. et al. Protein–protein and protein–membrane associations in the lignin pathway. Plant Cell 24, 4465–4482 (2012).

    Google Scholar 

  44. Adib, A. M. et al. The metabolites of Piper sarmentosum and their biological properties: a recent update. Phytochem Rev. 23, 1443–1475 (2024).

    Google Scholar 

  45. Wang, J. et al. DNA gains and losses in gigantic genomes do not track differences in transposable element-host silencing interactions. Commun. Biol. 8, 704 (2025).

    Google Scholar 

  46. Cheng, L. et al. Genome assembly of Stewartia sinensis reveals origin and evolution of orphan genes in Theaceae. Commun. Biol. 8, 354 (2025).

    Google Scholar 

  47. Galindo-González, L., Mhiri, C., Deyholos, M. K. & Grandbastien, M.-A. LTR-retrotransposons in plants: engines of evolution. Gene 626, 14–25 (2017).

    Google Scholar 

  48. Grandbastien, M.-A. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochimica et. Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1849, 403–416 (2015).

    Google Scholar 

  49. Sun, W., Xu, Z., Song, C. & Chen, S. Herbgenomics: decipher molecular genetics of medicinal plants. Innovation 3, 100322 (2022).

    Google Scholar 

  50. Vs, G. Pepper - chemistry, technology, and quality evaluation. CRC Crit. Rev. Food Sci. Nutri. 9, 115–225 (1977).

  51. Rajopadhye, A. A., Namjoshi, T. P. & Upadhye, A. S. Rapid validated HPTLC method for estimation of piperine and piperlongumine in root of Piper longum extract and its commercial formulation. Rev. Bras. Farmacogn. 22, 1355–1361 (2012).

    Google Scholar 

  52. Vanholme, R., De Meester, B., Ralph, J. & Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 56, 230–239 (2019).

    Google Scholar 

  53. Yamada, Y. & Sato, F. Transcription factors in alkaloid engineering. Biomolecules 11, 1719 (2021).

    Google Scholar 

  54. Xu, W., Dubos, C. & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 20, 176–185 (2015).

    Google Scholar 

  55. Hao, Y., Zong, X., Ren, P., Qian, Y. & Fu, A. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in arabidopsis. Int. J. Mol. Sci. 22, 7152 (2021).

    Google Scholar 

  56. Prakash, P. et al. 199–217 (Academic Press, 2023). https://doi.org/10.1016/B978-0-323-90613-5.00019-4.

  57. Zhou, Z. et al. Targeting cofactors regeneration in methylation and hydroxylation for high level production of Ferulic acid. Metab. Eng. 73, 247–255 (2022).

    Google Scholar 

  58. Chen, R. et al. De novo biosynthesis of plant lignans by synthetic yeast consortia. Nat. Chem. Biol. 21, 1487–1496 (2025).

    Google Scholar 

  59. Fisyuk, A. & Poendaev, N. Synthesis of 5,6-Dihydropyridin-2(1H)-ones, 1,5,6,8,8a-Hexahydroisoquinolin-3(2H)-ones and 4a,5,6,7,8,8a-Hexahydroquinolin-2(1H)-ones by intramolecular wittig reaction. Molecules 7, 124–128 (2002).

    Google Scholar 

  60. Fisyuk, A. S., Poendaev, N. V. & Bundel, Y. G. A new route for the synthesis of 5,6-dihydropyridin-2(1H)-ones, 2-pyridones and (4-hydroxy-2-oxopiperid-3-yl) pyridinium chlorides by intramolecular cyclization of N-3-oxoalkylchloroacetamide derivatives. Mendeleev Commun. 8, 12–13 (1998).

    Google Scholar 

  61. Cui, J. et al. Telomere-to-telomere Phragmites australis reference genome assembly with a B chromosome provides insights into its evolution and polysaccharide biosynthesis. Commun. Biol. 8, 73 (2025).

    Google Scholar 

  62. Zhang, X.-Y. et al. Optimization and quality control of genome-wide Hi-C library preparation. Yi Chuan 39, 847–855 (2017).

    Google Scholar 

  63. Sim, S. B., Corpuz, R. L., Simmonds, T. J. & Geib, S. M. HiFiAdapterFilt, a memory efficient read processing pipeline, prevents occurrence of adapter sequence in PacBio HiFi reads and their negative impacts on genome assembly. BMC Genomics 23, 157 (2022).

    Google Scholar 

  64. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Google Scholar 

  65. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    Google Scholar 

  66. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  67. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE 9, e112963 (2014).

    Google Scholar 

  68. Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinforma. 19, 460 (2018).

    Google Scholar 

  69. Hu, J. et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biol. 25, 107 (2024).

    Google Scholar 

  70. Xu, M. et al. TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9, giaa094 (2020).

    Google Scholar 

  71. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Google Scholar 

  72. Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int Ed. Engl. 57, 10436–10448 (2018).

    Google Scholar 

  73. Robinson, J. T. et al. Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. Cell Syst. 6, 256–258.e1 (2018).

    Google Scholar 

  74. Wolff, J. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 48, W177–W184 (2020).

    Google Scholar 

  75. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  76. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Google Scholar 

  77. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    Google Scholar 

  78. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Google Scholar 

  79. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma. Chapter 4, 1–4 (2009).

    Google Scholar 

  80. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 117, 9451–9457 (2020).

    Google Scholar 

  81. Zhang, R.-G. et al. TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant genomes. Hortic. Res. 9, uhac017 (2022).

    Google Scholar 

  82. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Google Scholar 

  83. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    Google Scholar 

  84. Gabriel, L. et al. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. bioRxiv 2023.06.10.544449 https://doi.org/10.1101/2023.06.10.544449 (2024).

  85. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Google Scholar 

  86. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    Google Scholar 

  87. Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol. Biol. 1962, 161–177 (2019).

    Google Scholar 

  88. Haas, B. J. et al. Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Google Scholar 

  89. Riehl, K., Riccio, C., Miska, E. A. & Hemberg, M. TransposonUltimate: software for transposon classification, annotation and detection. Nucleic Acids Res. 50, e64 (2022).

    Google Scholar 

  90. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  91. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Google Scholar 

  92. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  93. Puttick, M. N. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019).

    Google Scholar 

  94. Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).

    Google Scholar 

  95. Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).

    Google Scholar 

  96. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Google Scholar 

  97. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Google Scholar 

  98. Sun, P. et al. WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol. Plant 15, 1841–1851 (2022).

    Google Scholar 

  99. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  100. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Google Scholar 

  101. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

    Google Scholar 

  102. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).

    Google Scholar 

  103. Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Provincial Key Research and Development Program (2022B0202110003, 2024B1212060007), the Natural Science Foundation of China (32171842), the National Key Research and Development Project of China (2019YFD1100403), and the Key Project of Central South University of Forestry and Technology (63223068). We also thank Guangzhou Yuda Biotechnology Co., Ltd. for providing sequencing and tech nical services. Special thanks to Luo Yongpeng for his assistance with language editing.

Author information

Authors and Affiliations

  1. Key Laboratory of Forestry Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, Changsha, Hunan, China

    Yongjian Luo & Yiqiang Wang

  2. Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China

    Yongjian Luo, Ru Wang, Yixin Zhang, Yuejiao Wang & Jun Liu

  3. Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha, China

    Yongjian Luo & Yiqiang Wang

  4. School of Life Sciences, South China Normal University, Guangzhou, China

    Yuejiao Wang

Authors
  1. Yongjian Luo
    View author publications

    Search author on:PubMed Google Scholar

  2. Ru Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Yixin Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuejiao Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Jun Liu
    View author publications

    Search author on:PubMed Google Scholar

  6. Yiqiang Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.J.L. conducted writing–review, editing, writing original draft, software, methodology, and data curation; R.W. conducted writing–original draft, data curation, and conceptualization; Y.X.Z. conducted writing–original draft, data curation, and conceptualization; Y.J.W. conducted writing–original draft, data curation, and conceptualization; J.L. Writing review, editing, Writing– original draft, Investigation, Funding acquisition, Conceptualization. Y.Q.W. conducted writing–original draft, supervision, project administration, funding acquisition, and conceptualization.

Corresponding authors

Correspondence to Jun Liu or Yiqiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Aylin Bircan and David Favero. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Description of Additional Supplementary Files

SUPPLEMENTAL DATA

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wang, R., Zhang, Y. et al. A chromosome-level genome assembly and multi-omics analyses provide insights into the biosynthesis of piperlongumine in Piper sarmentosum. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09448-z

Download citation

  • Received: 29 April 2025

  • Accepted: 18 December 2025

  • Published: 03 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09448-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Medicinal Plant Genomics

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing