Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
A microphysiological model of human MASLD reveals paradoxical response to resmetirom
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

A microphysiological model of human MASLD reveals paradoxical response to resmetirom

  • Dominick J. Hellen  ORCID: orcid.org/0000-0002-2793-399X1,
  • Jessica Ungerleider1,
  • Erin Tevonian  ORCID: orcid.org/0000-0001-7645-19571,
  • Pierre Sphabmixay1,
  • Priyatanu Roy1,
  • Nikolaos Meimetis  ORCID: orcid.org/0000-0003-2333-01871,
  • Federico Presutti2,
  • Ashleigh M. Williams1,
  • Ryan C. Ogi  ORCID: orcid.org/0009-0005-4185-77421,
  • Caroline A. Lewis  ORCID: orcid.org/0000-0003-1787-50843,
  • Jacob Jeppesen3,4,
  • Sixian You  ORCID: orcid.org/0000-0002-1243-18152,
  • Damien Demozay4 &
  • …
  • Linda G. Griffith  ORCID: orcid.org/0000-0002-1801-55481 

Communications Biology , Article number:  (2026) Cite this article

  • 1148 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biotechnology
  • Mechanisms of disease

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic disease with multiple etiologies, stemming from the interplay between local and systemic genetic, diet, and gene-environment interactions. To understand the progression of MASLD in a controlled setting, we utilized a human liver microphysiological system (MPS) to establish a physiologically relevant metabolic baseline and probe how primary human hepatocytes respond to perturbations in insulin, glucose, and free fatty acids (FFAs). Replicate liver MPS were maintained in media with either 200 pM or 800 pM insulin for up to 3 weeks alone and in combination with standard glucose (5.5 mM), hyperglycemia (11 mM glucose), normal (20 µM) and elevated FFA (100 µM). Together, hyperinsulinemia along with elevated glucose and FFAs, induces the release of pro-inflammatory chemokines, accumulation of triglycerides, and predisposes hepatocytes to insulin resistance. Treatment with the thyroid receptor β agonist resmetirom normalizes hepatic fat content and partially rescues insulin sensitivity, but paradoxically induces higher CXCL1 and IL8 expression in male and female donors. In aggregate, our enhanced in vitro MPS model establishes a metabolic baseline and perturbed condition that recapitulates a spectrum of phenotypes observed in MASLD, offering improved quantification and insight into disease progression with relevance to human physiology.

Similar content being viewed by others

Human genetics of steatotic liver disease: insights into insulin resistance and lipid metabolism

Article 17 October 2025

An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD)

Article Open access 12 June 2024

Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system

Article Open access 12 September 2024

Data availability

RNA-Seq data were deposited into the Gene Expression Omnibus database under accession number GSE313774 and are available at the following URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE313774. The experimental data, including Supplementary Data 1 and other source material, that support the findings of this study are available in Figshare with the identifier https://doi.org/10.6084/m9.figshare.30888380.

References

  1. Targher, G., Corey, K. E., Byrne, C. D. & Roden, M. The complex link between NAFLD and type 2 diabetes mellitus—mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 18, 599–612 (2021).

    Google Scholar 

  2. Wang, S. & Friedman, S. L. Found in translation—Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci. Transl. Med. 15, eadi0759 (2023).

    Google Scholar 

  3. Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019).

    Google Scholar 

  4. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Google Scholar 

  5. Green, C. J. et al. Studying non-alcoholic fatty liver disease: the ins and outs of in vivo, ex vivo and in vitro human models. Horm. Mol. Biol. Clin. Investig. https://doi.org/10.1515/hmbci-2018-0038 (2018).

  6. Saydmohammed, M. et al. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp. Biol. Med. 246, 2420–2441 (2021).

    Google Scholar 

  7. Sakurai, Y., Kubota, N., Yamauchi, T. & Kadowaki, T. Role of insulin resistance in MAFLD. Int. J. Mol. Sci. 22, 4156 (2021).

    Google Scholar 

  8. Najjar, S. M. & Perdomo, G. Hepatic insulin clearance: mechanism and physiology. Physiology 34, 198–215 (2019).

    Google Scholar 

  9. Ter Horst, K. W. et al. Hepatic insulin resistance is not pathway selective in humans with nonalcoholic fatty liver disease. Diabetes Care 44, 489–498 (2021).

    Google Scholar 

  10. Bell, C. C. et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci. Rep. 6, 25187 (2016).

    Google Scholar 

  11. Aizenshtadt, A. et al. Pump-Less, recirculating organ-on-chip (rOoC) platform to model the metabolic crosstalk between islets and liver. Adv. Healthc. Mater. 13, 2303785 (2024).

    Google Scholar 

  12. Rigual, M. d. M. et al. Macrophages harness hepatocyte glutamate to boost liver regeneration. Nature 641, 1005–1016 (2025).

  13. Wang, J., Wu, X., Zhao, J., Ren, H. & Zhao, Y. Developing liver microphysiological systems for biomedical applications. Adv. Healthc. Mater. 13, 2302217 (2024).

    Google Scholar 

  14. Messelmani, T. et al. Liver organ-on-chip models for toxicity studies and risk assessment. Lab Chip 22, 2423–2450 (2022).

    Google Scholar 

  15. Kostrzewski, T. et al. A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol. Commun. 4, 77–91 (2020).

    Google Scholar 

  16. Reaven, G. M. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Google Scholar 

  17. Sarkar, U. et al. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab. Dispos. 43, 1091–1099 (2015).

    Google Scholar 

  18. Tsamandouras, N. et al. Quantitative assessment of population variability in hepatic drug metabolism using a perfused three-dimensional human liver microphysiological system. J. Pharmacol. Exp. Ther. 360, 95–105 (2017).

    Google Scholar 

  19. Vacca, M. et al. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat. Metab. 2, 514–531 (2020).

    Google Scholar 

  20. Long, T. J. et al. Modeling therapeutic antibody-small molecule drug-drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab. Dispos. 44, 1940–1948 (2016).

    Google Scholar 

  21. Clark, A. et al. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab Chip. 17, 156–168 (2017).

  22. Vaupel, P. & Multhoff, G. Blood supply and oxygenation status of the liver: from physiology to malignancy. In Oxygen Transport to Tissue XLIII. 263–267 (Springer International Publishing, Cham, 2022).

  23. Domansky, K. et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10, 51–58 (2010).

    Google Scholar 

  24. Rubiano, A. et al. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism and accumulation. Clin. Transl. Sci. https://doi.org/10.1111/cts.12969 (2020).

  25. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Google Scholar 

  26. Song, S. H. et al. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 85, 4491–4499 (2000).

    Google Scholar 

  27. Porksen, N. et al. Human insulin release processes measured by intraportal sampling. Am. J. Physiol. Endocrinol. Metab. 282, E695–E702 (2002).

    Google Scholar 

  28. Kiselyov, V. V., Versteyhe, S., Gauguin, L. & De Meyts, P. Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Mol. Syst. Biol. 5, 243 (2009).

    Google Scholar 

  29. Hori, S. S., Kurland, I. J. & DiStefano, J. J. 3rd Role of endosomal trafficking dynamics on the regulation of hepatic insulin receptor activity: models for Fao cells. Ann. Biomed. Eng. 34, 879–892 (2006).

    Google Scholar 

  30. Matsumoto, M., Pocai, A., Rossetti, L., DePinho, R. A. & Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metabolism 6, 208–216 (2007).

    Google Scholar 

  31. Li, T. et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J. Biol. Chem. 287, 1861–1873 (2012).

    Google Scholar 

  32. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    Google Scholar 

  33. Mittendorfer, B. Sexual dimorphism in human lipid metabolism. J. Nutr. 135, 681–686 (2005).

    Google Scholar 

  34. Jamalinia, M., Lonardo, A. & Weiskirchen, R. Sex and gender differences in liver fibrosis: pathomechanisms and clinical outcomes. Fibrosis 2, 10006 (2024).

    Google Scholar 

  35. Kimura, M. et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell 185, 4216–4232. e16 (2022).

    Google Scholar 

  36. You, S. et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 9, 2125 (2018).

    Google Scholar 

  37. Liu, K. et al. Deep and dynamic metabolic and structural imaging in living tissues. Sci. Adv. 10, eadp2438 (2024).

    Google Scholar 

  38. Stéphenne, X., Najimi, M. & Sokal, E. M. Hepatocyte cryopreservation: is it time to change the strategy? World J. Gastroenterol. 16, 1 (2010).

    Google Scholar 

  39. Khetani, S. R. et al. Microengineered liver tissues for drug testing. J. Lab. Autom. 20, 216–250 (2015).

    Google Scholar 

  40. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 1–14 (2013).

    Google Scholar 

  41. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Google Scholar 

  42. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  43. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Google Scholar 

  44. Grissa, D., Junge, A., Oprea, T. I. & Jensen, L. J. Diseases 2.0: a weekly updated database of disease–gene associations from text mining and data integration. Database. https://doi.org/10.1093/database/baac019 (2022).

  45. Piñero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845–D855 (2019).

    Google Scholar 

  46. Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).

    Google Scholar 

  47. Cadavid, J. L., Meimetis, N., Griffith, L. G. & Lauffenburger, D. A. Systems biology framework for rational design of operational conditions for <em>in vitro / in vivo</em> translation of microphysiological systems. Preprint at bioRxiv https://doi.org/10.1101/2025.01.17.633624 (2025).

  48. Kostrzewski, T. et al. Modelling human liver fibrosis in the context of non-alcoholic steatohepatitis using a microphysiological system. Commun. Biol. 4, 1080 (2021).

    Google Scholar 

  49. Hoang, S. A. et al. Gene expression predicts histological severity and reveals distinct molecular profiles of nonalcoholic fatty liver disease. Sci. Rep. 9, 12541 (2019).

    Google Scholar 

  50. Feaver, R. E. et al. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight 1, e90954 (2016).

    Google Scholar 

  51. Cariou, B. et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr. Metab. 8, 1–6 (2011).

    Google Scholar 

  52. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Google Scholar 

  53. Schott, C. et al. GAS6 and AXL promote insulin resistance by rewiring insulin signaling and increasing insulin receptor trafficking to endosomes. Diabetes 73, 1648–1661 (2024).

    Google Scholar 

  54. Tian, T. et al. Dietary quality and relationships with metabolic dysfunction-associated fatty liver disease (MAFLD) among United States adults, results from NHANES 2017–2018. Nutrients 14, 4505 (2022).

    Google Scholar 

  55. Beygi, M., Ahi, S., Zolghadri, S. & Stanek, A. Management of metabolic-associated fatty liver disease/metabolic dysfunction-associated steatotic liver disease: from medication therapy to nutritional interventions. Nutrients 16, 2220 (2024).

    Google Scholar 

  56. Marino, L., Kim, A., Ni, B. & Celi, F. S. Thyroid hormone action and liver disease, a complex interplay. Hepatology 81, 651–669 (2025).

    Google Scholar 

  57. Li, J., Ayada, I. & Pan, Q. Resmetirom directly inhibits lipid accumulation in human liver-derived organoids. J. Hepatol. 83, e86–e87 (2025).

  58. Kannt, A. et al. Activation of thyroid hormone receptor-β improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. Br. J. Pharmacol. 178, 2412–2423 (2021).

    Google Scholar 

  59. Wang, X., Wang, L., Geng, L., Tanaka, N. & Ye, B. Resmetirom ameliorates NASH-model mice by suppressing STAT3 and NF-κB signaling pathways in an RGS5-dependent manner. Int. J. Mol. Sci. 24, 5843 (2023).

    Google Scholar 

  60. Polyzos, S. A. & Targher, G. Hepatic thyroid hormone receptor-β signalling: Mechanisms and recent advancements in the treatment of metabolic dysfunction-associated steatohepatitis. Diabetes Obes. Metab. 27, 1635–1647 (2025).

    Google Scholar 

  61. Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, ÁL. & Pérez, S. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell. Longev. 2020, 1452696 (2020).

    Google Scholar 

  62. Zou, X. et al. Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling? J. Bioenerg. Biomembr. 49, 325–333 (2017).

    Google Scholar 

  63. Caro, J. F. et al. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity. J. Clin. Invest. 78, 249–258 (1986).

    Google Scholar 

  64. Koh, H. E., Cao, C. & Mittendorfer, B. Insulin clearance in obesity and type 2 Diabetes. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23020596 (2022).

  65. Duriez, M. et al. A 3D human liver model of nonalcoholic steatohepatitis. J. Clin. Transl. Hepatol. 8, 359–370 (2020).

    Google Scholar 

  66. Kozyra, M. et al. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci. Rep. 8, 14297 (2018).

    Google Scholar 

  67. Cordero-Herrera, I. et al. AMP-activated protein kinase activation and NADPH oxidase inhibition by inorganic nitrate and nitrite prevent liver steatosis. Proc. Natl. Acad. Sci. USA 116, 217–226 (2019).

    Google Scholar 

  68. Davidson, M. D., Pickrell, J. & Khetani, S. R. Physiologically inspired culture medium prolongs the lifetime and insulin sensitivity of human hepatocytes in micropatterned co-cultures. Toxicology 449, 152662 (2021).

    Google Scholar 

  69. Sarkar, U. et al. Integrated assessment of diclofenac biotransformation, pharmacokinetics, and omics-based toxicity in a three-dimensional human liver-immunocompetent coculture system. Drug Metab. Dispos. 45, 855–866 (2017).

    Google Scholar 

  70. Jang, K. J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aax5516 (2019).

  71. Otumala, A. E. et al. Opportunities and considerations for studying liver disease with microphysiological systems on a chip. Lab Chip 23, 2877–2898 (2023).

    Google Scholar 

  72. Yang, J. et al. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. Commun. Biol. 6, 310 (2023).

    Google Scholar 

  73. Ströbel, S. et al. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci Rep. 11, 22765 (2021). Nov 23.

    Google Scholar 

  74. Youhanna, S. et al. Chemogenomic screening in a patient-derived 3D fatty liver disease model reveals the CHRM1-TRPM8 axis as a novel module for targeted intervention. Adv. Sci. 12, 2407572 (2025).

    Google Scholar 

  75. Gorden, D. L. et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J. Lipid Res. 56, 722–736 (2015).

    Google Scholar 

  76. McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).

    Google Scholar 

  77. Liu, H. et al. Dissecting acute drug-induced hepatotoxicity and therapeutic responses of steatotic liver disease using primary mouse liver and blood cells in a liver-on-a-chip model. Adv. Sci. 11, 2403516 (2024).

    Google Scholar 

  78. Lauschke, V. M., Hendriks, D. F., Bell, C. C., Andersson, T. B. & Ingelman-Sundberg, M. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem. Res. Toxicol. 29, 1936–1955 (2016).

    Google Scholar 

  79. Lopez-Alcantara, N., Oelkrug, R., Sentis, S. C., Kirchner, H. & Mittag, J. Lack of thyroid hormone receptor beta is not detrimental for non-alcoholic steatohepatitis progression. Iscience 26, 108064 (2023).

    Google Scholar 

  80. Xia, M. et al. Comparison of wild-type and high-risk PNPLA3 variants in a human biomimetic liver microphysiology system for metabolic dysfunction-associated steatotic liver disease precision therapy. Front. Cell Dev. Biol. 12, 1423936 (2024).

    Google Scholar 

  81. Ezhilarasan, D. Thyromimetics and MASLD: unveiling the novel molecules beyond resmetirom. J. Gastroenterol. Hepatol. 40, 367–378 (2025).

  82. Satin, L. S., Butler, P. C., Ha, J. & Sherman, A. S. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol. Aspects Med. 42, 61–77 (2015).

    Google Scholar 

  83. Laurenti, M. C. et al. Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight. https://doi.org/10.1172/jci.insight.136136 (2020).

  84. Bauer, S. et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Sci Rep. 7, 14620 (2017).

    Google Scholar 

  85. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38, 140–149 (2015).

    Google Scholar 

  86. Hodson, L., Skeaff, C. M. & Fielding, B. A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47, 348–380 (2008).

    Google Scholar 

  87. Groop, L., Widen, E. & Ferrannini, E. Insulin resistance and insulin deficiency in the pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: errors of metabolism or of methods? Diabetologia 36, 1326–1331 (1993).

    Google Scholar 

  88. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45–e45 (2001).

    Google Scholar 

  89. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  90. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    Google Scholar 

  91. Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2, lqaa078 (2020).

    Google Scholar 

  92. Weigelin, B., Bakker, G.-J. & Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 129, 245–255 (2016).

    Google Scholar 

  93. Georgakoudi, I. & Quinn, K. P. Label-free optical metabolic imaging in cells and tissues. Ann. Rev. Biomed. Eng. 25, 413–443 (2023).

    Google Scholar 

  94. Hellen, D. J. & Karpen, S. J. LiverQuant: an improved method for quantitative analysis of liver pathology. Bio-Protoc. 13, e477 (2023).

    Google Scholar 

  95. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 1–7 (2017).

    Google Scholar 

Download references

Acknowledgements

Dominick J. Hellen received funding from the NIH (5T32ES007020-50). Erin Tevonian received funding from the NIH (Douglas A. Lauffenburger; R01-DK108056) and a National Science Foundation Graduate Research Fellowship (1745302). This work was funded by NovoNordisk via a sponsored research agreement with the Massachusetts Institute of Technology. The authors thank Jose L. Cadavid, Rachelle P. Braun, Kairav K. Maniar, Saul J. Karpen, and Douglas A. Lauffenburger for their constructive discussions and methodological insights.

Author information

Authors and Affiliations

  1. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    Dominick J. Hellen, Jessica Ungerleider, Erin Tevonian, Pierre Sphabmixay, Priyatanu Roy, Nikolaos Meimetis, Ashleigh M. Williams, Ryan C. Ogi & Linda G. Griffith

  2. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

    Federico Presutti & Sixian You

  3. Whitehead Institute for Biomedical Research, Cambridge, MA, USA

    Caroline A. Lewis & Jacob Jeppesen

  4. Liver Disease, Novo Nordisk A/S, Måløv, Denmark

    Jacob Jeppesen & Damien Demozay

Authors
  1. Dominick J. Hellen
    View author publications

    Search author on:PubMed Google Scholar

  2. Jessica Ungerleider
    View author publications

    Search author on:PubMed Google Scholar

  3. Erin Tevonian
    View author publications

    Search author on:PubMed Google Scholar

  4. Pierre Sphabmixay
    View author publications

    Search author on:PubMed Google Scholar

  5. Priyatanu Roy
    View author publications

    Search author on:PubMed Google Scholar

  6. Nikolaos Meimetis
    View author publications

    Search author on:PubMed Google Scholar

  7. Federico Presutti
    View author publications

    Search author on:PubMed Google Scholar

  8. Ashleigh M. Williams
    View author publications

    Search author on:PubMed Google Scholar

  9. Ryan C. Ogi
    View author publications

    Search author on:PubMed Google Scholar

  10. Caroline A. Lewis
    View author publications

    Search author on:PubMed Google Scholar

  11. Jacob Jeppesen
    View author publications

    Search author on:PubMed Google Scholar

  12. Sixian You
    View author publications

    Search author on:PubMed Google Scholar

  13. Damien Demozay
    View author publications

    Search author on:PubMed Google Scholar

  14. Linda G. Griffith
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: D.J.H., J.U., & L.G.G.; Data Collection: D.J.H., J.U., E.T., P.S., P.R., F.P., A.M.W., R.O.C., C.A.L., J.J., & D.D.; Data Analysis: D.J.H., J.U., & N.M.; Original Draft: D.J.H.; Data Interpretation & Draft Editing: D.J.H., J.U., E.T., S.Y., D.D., & L.G.G. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Linda G. Griffith.

Ethics declarations

Competing interests

The authors declare the following competing interests: L.G.G. is an inventor on patents licensed to CN BioInnovations. J.J. and D.D. are employed/shareholders of NovoNordisk A/S. All other authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Stephen Fowler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Dr Katharine Irvine and Dr Ophelia Bu. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellen, D.J., Ungerleider, J., Tevonian, E. et al. A microphysiological model of human MASLD reveals paradoxical response to resmetirom. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09484-9

Download citation

  • Received: 25 April 2025

  • Accepted: 23 December 2025

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09484-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research