Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Psychedelic 5-HT2A agonist increases spontaneous and evoked 5-Hz oscillations in visual and retrosplenial cortex
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

Psychedelic 5-HT2A agonist increases spontaneous and evoked 5-Hz oscillations in visual and retrosplenial cortex

  • Callum M. White1,2 na1,
  • Zohre Azimi1 na1,
  • Robert Staadt1 na1,
  • Chenchen Song  ORCID: orcid.org/0000-0003-4574-64313,
  • Thomas Knöpfel  ORCID: orcid.org/0000-0002-5718-07654 na2 &
  • …
  • Dirk Jancke  ORCID: orcid.org/0000-0001-8440-62591,2 na2 

Communications Biology , Article number:  (2026) Cite this article

  • 1274 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Consciousness
  • Neural circuits
  • Visual system

Abstract

Visual perception appears largely stable in time. However, psychophysical studies have revealed that low frequency (0.5 – 7 Hz) oscillatory dynamics can modulate perception and have been linked to various cognitive states and functions. Neither the contribution of waves around 5 Hz (theta or alpha-like) to cortical activity nor their impact during aberrant brain states have been resolved at high spatiotemporal scales. Here, using cortex-wide population voltage imaging in awake mice, we found that bouts of 5-Hz oscillations in the visual cortex are accompanied by similar oscillations in the retrosplenial cortex, occurring both spontaneously and evoked by visual stimulation. Injection of psychotropic 5-HT2AR agonist induced a significant increase in spontaneous 5-Hz oscillations, and also increased the power, occurrence probability and temporal persistence of visually evoked 5-Hz oscillations. This modulation of 5-Hz oscillations in both cortical areas indicates a strengthening of top-down control of perception, supporting an underlying mechanism of perceptual filling and visual hallucinations.

Similar content being viewed by others

Short- and long-term modulation of rat prefrontal cortical activity following single doses of psilocybin

Article Open access 26 August 2025

5-HT2AR and NMDAR psychedelics induce similar hyper-synchronous states in the rat cognitive-limbic cortex-basal ganglia system

Article Open access 26 July 2023

Psilocybin desynchronizes the human brain

Article Open access 17 July 2024

Data availability

The data supporting the findings of this study and custom MATLAB code used for analysis are available within the main text, the Supplementary Information file, the Supplementary Data, or from the corresponding authors upon request.

References

  1. Lozano-Soldevilla, D. & VanRullen, R. The Hidden Spatial Dimension of Alpha: 10-Hz Perceptual Echoes Propagate as Periodic Traveling Waves in the Human Brain. Cell Rep 26, 374–380.e4 (2019).

    Google Scholar 

  2. Luo, C., Brüers, S., Berry, I., VanRullen, R. & Reddy, L. Tentative fMRI signatures of perceptual echoes in early visual cortex. NeuroImage 237, 118053 (2021).

    Google Scholar 

  3. Schwenk, J. C. B., VanRullen, R. & Bremmer, F. Dynamics of Visual Perceptual Echoes Following Short-Term Visual Deprivation. Cereb. Cortex Commun. 1, tgaa012 (2020).

    Google Scholar 

  4. McCormick, D. A., McGinley, M. J. & Salkoff, D. B. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31, 133–140 (2015).

    Google Scholar 

  5. Kienitz, R., Schmid, M. C. & Dugué, L. Rhythmic sampling revisited: Experimental paradigms and neural mechanisms. Eur. J. Neurosci. 55, 3010–3024 (2022).

    Google Scholar 

  6. Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat. Commun. 10, 215 (2019).

    Google Scholar 

  7. Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J. & Madsen, J. R. Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. J. Neurosci. 23, 10809–10814 (2003).

    Google Scholar 

  8. Fuentemilla, L., Penny, W. D., Cashdollar, N., Bunzeck, N. & Düzel, E. Theta-Coupled Periodic Replay in Working Memory. Curr. Biol. 20, 606–612 (2010).

    Google Scholar 

  9. Nestvogel, D. B. & McCormick, D. A. Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations. Neuron 110, 120–138.e4 (2022).

    Google Scholar 

  10. Einstein, M. C., Polack, P.-O., Tran, D. T. & Golshani, P. Visually Evoked 3–5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice. J. Neurosci. 37, 5084–5098 (2017).

    Google Scholar 

  11. Gao, M., Lim, S. & Chubykin, A. A. Visual Familiarity Induced 5-Hz Oscillations and Improved Orientation and Direction Selectivities in V1. J. Neurosci. 41, 2656–2667 (2021).

    Google Scholar 

  12. Kissinger, S. T., Pak, A., Tang, Y., Masmanidis, S. C. & Chubykin, A. A. Oscillatory Encoding of Visual Stimulus Familiarity. J. Neurosci. 38, 6223–6240 (2018).

    Google Scholar 

  13. Zimmerman, M. P. et al. Origin of visual experience-dependent theta oscillations. Curr. Biol. 35, 87–99.e6 (2025).

    Google Scholar 

  14. Pak, A. & Chubykin, A. A. Cortical Tuning is Impaired After Perceptual Experience in Primary Visual Cortex of Serotonin Transporter-Deficient Mice. Cereb. Cortex Commun. 1, tgaa066 (2020).

    Google Scholar 

  15. Pollak Dorocic, I. et al. A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron 83, 663–678 (2014).

    Google Scholar 

  16. Atasoy, S. et al. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci. Rep. 7, 17661 (2017).

    Google Scholar 

  17. Deco, G. et al. Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Curr. Biol. 28, 3065–3074.e6 (2018).

    Google Scholar 

  18. Jancke, D., Herlitze, S., Kringelbach, M. L. & Deco, G. Bridging the gap between single receptor type activity and whole-brain dynamics. FEBS J 289, 2067–2084 (2022).

    Google Scholar 

  19. Kringelbach, M. L. et al. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci. 117, 9566–9576 (2020).

    Google Scholar 

  20. Kringelbach, M. L. & Deco, G. Brain States and Transitions: Insights from Computational Neuroscience. Cell Rep 32, 108128 (2020).

    Google Scholar 

  21. Ly, S., Pishdari, B., Lok, L. L., Hajos, M. & Kocsis, B. Activation of 5-HT6 Receptors Modulates Sleep–Wake Activity and Hippocampal Theta Oscillation. ACS Chem. Neurosci. 4, 191–199 (2013).

    Google Scholar 

  22. Sörman, E., Wang, D., Hajos, M. & Kocsis, B. Control of hippocampal theta rhythm by serotonin: Role of 5-HT2c receptors. Neuropharmacology 61, 489–494 (2011).

    Google Scholar 

  23. Azimi, Z. et al. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 9, e53552 (2020).

    Google Scholar 

  24. Michaiel, A. M., Parker, P. R. L. & Niell, C. M. A Hallucinogenic Serotonin-2A Receptor Agonist Reduces Visual Response Gain and Alters Temporal Dynamics in Mouse V1. Cell Rep 26, 3475–3483.e4 (2019).

    Google Scholar 

  25. Seillier, L. et al. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1. J. Neurosci. 37, 11390–11405 (2017).

    Google Scholar 

  26. Watakabe, A. et al. Enriched Expression of Serotonin 1B and 2A Receptor Genes in Macaque Visual Cortex and their Bidirectional Modulatory Effects on Neuronal Responses. Cereb. Cortex 19, 1915–1928 (2009).

    Google Scholar 

  27. Waterhouse, B. D., Ausim Azizi, S., Burne, R. A. & Woodward, D. J. Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res 514, 276–292 (1990).

    Google Scholar 

  28. Fournier, J. et al. Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations. Curr. Biol. 30, 3811–3817.e6 (2020).

    Google Scholar 

  29. Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).

    Google Scholar 

  30. Sharp, T. & Ippolito, A. Neuropsychopharmacology of hallucinogenic and non-hallucinogenic 5-HT2A receptor agonists. Br. J. Pharmacol. https://doi.org/10.1111/bph.70050 (2025).

  31. González-Maeso, J. et al. Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior. Neuron 53, 439–452 (2007).

    Google Scholar 

  32. Garcia, E. E., Smith, R. L. & Sanders-Bush, E. Role of Gq protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52, 1671–1677 (2007).

    Google Scholar 

  33. López-Giménez, J. F. & González-Maeso, J. Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. in Behavioral Neurobiology of Psychedelic Drugs (eds. Halberstadt, A. L., Vollenweider, F. X. & Nichols, D. E.) 45–73 (Springer, Berlin, Heidelberg, https://doi.org/10.1007/7854_2017_4782018).

  34. Bernasconi, F. et al. Theta oscillations and minor hallucinations in Parkinson’s disease reveal decrease in frontal lobe functions and later cognitive decline. Nat. Ment. Health 1, 477–488 (2023).

    Google Scholar 

  35. van Ommen, M. M., van Laar, T., Renken, R., Cornelissen, F. W. & Bruggeman, R. Visual Hallucinations in Psychosis: The Curious Absence of the Primary Visual Cortex. Schizophr. Bull. 49, S68–S81 (2023).

    Google Scholar 

  36. de Filippo, R. et al. Somatostatin interneurons activated by 5-HT2A receptor suppress slow oscillations in medial entorhinal cortex. eLife 10, e66960 (2021).

    Google Scholar 

  37. Grandjean, J. et al. A brain-wide functional map of the serotonergic responses to acute stress and fluoxetine. Nat. Commun. 10, 350 (2019).

    Google Scholar 

  38. Roth, G. I., Walton, P. L. & Yamamoto, W. S. Area postrema: Abrupt EEG synchronization following close intra-arterial perfusion with serotonin. Brain Res 23, 223–233 (1970).

    Google Scholar 

  39. Salomon, R. M. & Cowan, R. L. Oscillatory serotonin function in depression. Synapse 67, 801–820 (2013).

    Google Scholar 

  40. Vanderwolf, C. H. The electrocorticogram in relation to physiology and behavior: a new analysis. Electroencephalogr. Clin. Neurophysiol. 82, 165–175 (1992).

    Google Scholar 

  41. Vanderwolf, C. H. & Baker, G. B. Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res 374, 342–356 (1986).

    Google Scholar 

  42. Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108, 2323–2337 (2012).

    Google Scholar 

  43. Knöpfel, T. & Song, C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 20, 719–727 (2019).

    Google Scholar 

  44. Ortega, B. A., Weisstaub, N. V. & Katche, C. Retrosplenial cortex 5-HT2A receptors critically contribute to recognition memory processing. Front. Cell. Neurosci. 19, 1711777 (2025).

  45. Kienitz, R. et al. Theta, but Not Gamma Oscillations in Area V4 Depend on Input from Primary Visual Cortex. Curr. Biol. 31, 635–642.e3 (2021).

    Google Scholar 

  46. Spyropoulos, G., Bosman, C. A. & Fries, P. A theta rhythm in macaque visual cortex and its attentional modulation. Proc. Natl. Acad. Sci. 115, E5614–E5623 (2018).

    Google Scholar 

  47. Han, H.-B., Lee, K. E. & Choi, J. H. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. eNeuro 6, 6 (2019).

  48. Schmitz, G. P. et al. Psychedelic compounds directly excite 5-HT2A layer V medial prefrontal cortex neurons through 5-HT2A Gq activation. Transl. Psychiatry 15, 381 (2025).

    Google Scholar 

  49. Al-Imam, A. Could Hallucinogens Induce Permanent Pupillary Changes in (Ab)users? A Case Report from New Zealand. Case Rep. Neurol. Med. 2017, 2503762 (2017).

    Google Scholar 

  50. Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 2605 (2021).

    Google Scholar 

  51. Karalis, N. & Sirota, A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 13, 467 (2022).

    Google Scholar 

  52. Leupin, V. & Britz, J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc. Natl. Acad. Sci. 121, e2311953121 (2024).

    Google Scholar 

  53. Joshi, A. et al. Dynamic synchronization between hippocampal representations and stepping. Nature 617, 125–131 (2023).

    Google Scholar 

  54. Forli, A., Fan, W., Qi, K. K. & Yartsev, M. M. Replay and representation dynamics in the hippocampus of freely flying bats. Nature 1–7 https://doi.org/10.1038/s41586-025-09341-z.(2025).

  55. Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R. & Carhart-Harris, R. L. DMT alters cortical travelling waves. eLife 9, e59784 (2020).

    Google Scholar 

  56. Pais, M. L. et al. Rapid effects of tryptamine psychedelics on perceptual distortions and early visual cortical population receptive fields. NeuroImage 297, 120718 (2024).

    Google Scholar 

  57. Fehérvári, T. D., Okazaki, Y., Sawai, H. & Yagi, T. In Vivo Voltage-Sensitive Dye Study of Lateral Spreading of Cortical Activity in Mouse Primary Visual Cortex Induced by a Current Impulse. PLOS ONE 10, e0133853 (2015).

    Google Scholar 

  58. Liang, Y. et al. Complexity of cortical wave patterns of the wake mouse cortex. Nat. Commun. 14, 1434 (2023).

    Google Scholar 

  59. Bringuier, V., Chavane, F., Glaeser, L. & Frégnac, Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695–699 (1999).

    Google Scholar 

  60. Jancke, D., Chavane, F., Naaman, S. & Grinvald, A. Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426 (2004).

    Google Scholar 

  61. Benucci, A., Frazor, R. A. & Carandini, M. Standing Waves and Traveling Waves Distinguish Two Circuits in Visual Cortex. Neuron 55, 103–117 (2007).

    Google Scholar 

  62. Muller, L., Reynaud, A., Chavane, F. & Destexhe, A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014).

    Google Scholar 

  63. Grinvald, A., Lieke, E. E., Frostig, R. D. & Hildesheim, R. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14, 2545–2568 (1994).

    Google Scholar 

  64. Fakche, C. & Dugué, L. Perceptual Cycles Travel Across Retinotopic Space. J. Cogn. Neurosci. 36, 200–216 (2024).

    Google Scholar 

  65. Girard, P., Hupé, J. M. & Bullier, J. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85, 1328–1331 (2001).

    Google Scholar 

  66. Alexander, A. S., Place, R., Starrett, M. J., Chrastil, E. R. & Nitz, D. A. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 111, 150–175 (2023).

    Google Scholar 

  67. Spens, E. & Burgess, N. A generative model of memory construction and consolidation. Nat. Hum. Behav. 8, 526–543 (2024).

    Google Scholar 

  68. Freo, U., Holloway, H. W., Kalogeras, K., Rapoport, S. I. & Soncrant, T. T. Adrenalectomy or metyrapone-pretreatment abolishes cerebral metabolic responses to the serotonin agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in the hippocampus. Brain Res 586, 256–264 (1992).

    Google Scholar 

  69. Carhart-Harris, R. L. & Friston, K. J. REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelicss. Pharmacol. Rev. 71, 316–344 (2019).

    Google Scholar 

  70. Deco, G. et al. Awakening: Predicting external stimulation to force transitions between different brain states. Proc. Natl. Acad. Sci. 116, 18088–18097 (2019).

    Google Scholar 

  71. Carhart-Harris, R. L. et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).

  72. Mishina, Y., Mutoh, H., Song, C. & Knöpfel, T. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain. Front. Mol. Neurosci. 7, 78 (2014).

    Google Scholar 

  73. Song, C., Piscopo, D. M., Niell, C. M. & Knöpfel, T. Cortical signatures of wakeful somatosensory processing. Sci. Rep. 8, 11977 (2018).

    Google Scholar 

  74. Barzan, R. et al. Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT2A). Nat. Commun. 15, 8078 (2024).

    Google Scholar 

  75. Eickelbeck, D. et al. CaMello-XR enables visualization and optogenetic control of Gq/11 signals and receptor trafficking in GPCR-specific domains. Commun. Biol. 2, 1–16 (2019).

    Google Scholar 

  76. Aulakh, C. S., Hill, J. L., Yoney, H. T. & Murphy, D. L. Evidence for involvement of 5-HT1C and 5-HT2 receptors in the food intake suppressant effects of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Psychopharmacology (Berl.) 109, 444–448 (1992).

    Google Scholar 

  77. Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell 181, 936–953.e20 (2020).

    Google Scholar 

Download references

Acknowledgements

We thank Stefan Dobers and Henning Knoop and the RUB mechanical shop for technical support. This work was supported by Deutsche Forschungsgemeinschaft (DFG) grants: Project ID 122679504 - SFB 874, D.J.; JA 945/5-1, D.J.; “MoNN&Di”, Project number 492434978 - GRK 2862/1, Subproject 10, D.J.; BMBF, ERA-Net Neuron “Horizon 2020”, 01EW2104B, D.J.; US National Institutes of Health BRAIN Initiative Grant (5U01NS099573), T.K.; Lee Kuan Yew Postdoctoral Fellowship administered by Nanyang Technological University Singapore (022506-00001), C.S.; Open Fund Young Individual Research Grant (MOH-001720) administered by the Singapore Ministry of Health’s National Medical Research Council, C.S.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Callum M. White, Zohre Azimi, Robert Staadt.

  2. These authors jointly supervised this work Thomas Knöpfel, Dirk Jancke.

Authors and Affiliations

  1. Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany

    Callum M. White, Zohre Azimi, Robert Staadt & Dirk Jancke

  2. Monoaminergic Neuronal Networks & Diseases (MoNN&Di), Ruhr University Bochum, Bochum, Germany

    Callum M. White & Dirk Jancke

  3. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

    Chenchen Song

  4. JC STEM Laboratory for Neuronal Circuit Dynamics, Hong Kong Baptist University, Hong Kong (SAR), China

    Thomas Knöpfel

Authors
  1. Callum M. White
    View author publications

    Search author on:PubMed Google Scholar

  2. Zohre Azimi
    View author publications

    Search author on:PubMed Google Scholar

  3. Robert Staadt
    View author publications

    Search author on:PubMed Google Scholar

  4. Chenchen Song
    View author publications

    Search author on:PubMed Google Scholar

  5. Thomas Knöpfel
    View author publications

    Search author on:PubMed Google Scholar

  6. Dirk Jancke
    View author publications

    Search author on:PubMed Google Scholar

Contributions

These authors contributed equally: Zohre Azimi, Robert Staadt and Callum M. White. These authors jointly supervised this work: Dirk Jancke and Thomas Knöpfel. Conceptualization: T.K. and D.J. Data curation: C.M.W. and D.J. Formal analysis: C.M.W. and D.J. Data acquisition: Z.A. and R.S. Data visualization: C.M.W. and D.J. Software: C.M.W., T.K. and R.S. Supervision: T.K. and D.J. Funding acquisition and resources: C.S. T.K. and D.J. Writing—original draft: C.M.W., C.S., T.K. and D.J.

Corresponding authors

Correspondence to Thomas Knöpfel or Dirk Jancke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Hio-Been Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Jasmine Pan. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary information

Description of Additional Supplementary Files

Supplementary Data

Supplementary video 1

Reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, C.M., Azimi, Z., Staadt, R. et al. Psychedelic 5-HT2A agonist increases spontaneous and evoked 5-Hz oscillations in visual and retrosplenial cortex. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09492-9

Download citation

  • Received: 24 July 2025

  • Accepted: 23 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09492-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing