Abstract
Visual perception appears largely stable in time. However, psychophysical studies have revealed that low frequency (0.5 – 7 Hz) oscillatory dynamics can modulate perception and have been linked to various cognitive states and functions. Neither the contribution of waves around 5 Hz (theta or alpha-like) to cortical activity nor their impact during aberrant brain states have been resolved at high spatiotemporal scales. Here, using cortex-wide population voltage imaging in awake mice, we found that bouts of 5-Hz oscillations in the visual cortex are accompanied by similar oscillations in the retrosplenial cortex, occurring both spontaneously and evoked by visual stimulation. Injection of psychotropic 5-HT2AR agonist induced a significant increase in spontaneous 5-Hz oscillations, and also increased the power, occurrence probability and temporal persistence of visually evoked 5-Hz oscillations. This modulation of 5-Hz oscillations in both cortical areas indicates a strengthening of top-down control of perception, supporting an underlying mechanism of perceptual filling and visual hallucinations.

Similar content being viewed by others
Data availability
The data supporting the findings of this study and custom MATLAB code used for analysis are available within the main text, the Supplementary Information file, the Supplementary Data, or from the corresponding authors upon request.
References
Lozano-Soldevilla, D. & VanRullen, R. The Hidden Spatial Dimension of Alpha: 10-Hz Perceptual Echoes Propagate as Periodic Traveling Waves in the Human Brain. Cell Rep 26, 374–380.e4 (2019).
Luo, C., Brüers, S., Berry, I., VanRullen, R. & Reddy, L. Tentative fMRI signatures of perceptual echoes in early visual cortex. NeuroImage 237, 118053 (2021).
Schwenk, J. C. B., VanRullen, R. & Bremmer, F. Dynamics of Visual Perceptual Echoes Following Short-Term Visual Deprivation. Cereb. Cortex Commun. 1, tgaa012 (2020).
McCormick, D. A., McGinley, M. J. & Salkoff, D. B. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31, 133–140 (2015).
Kienitz, R., Schmid, M. C. & Dugué, L. Rhythmic sampling revisited: Experimental paradigms and neural mechanisms. Eur. J. Neurosci. 55, 3010–3024 (2022).
Fiebelkorn, I. C., Pinsk, M. A. & Kastner, S. The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat. Commun. 10, 215 (2019).
Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J. & Madsen, J. R. Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. J. Neurosci. 23, 10809–10814 (2003).
Fuentemilla, L., Penny, W. D., Cashdollar, N., Bunzeck, N. & Düzel, E. Theta-Coupled Periodic Replay in Working Memory. Curr. Biol. 20, 606–612 (2010).
Nestvogel, D. B. & McCormick, D. A. Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations. Neuron 110, 120–138.e4 (2022).
Einstein, M. C., Polack, P.-O., Tran, D. T. & Golshani, P. Visually Evoked 3–5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice. J. Neurosci. 37, 5084–5098 (2017).
Gao, M., Lim, S. & Chubykin, A. A. Visual Familiarity Induced 5-Hz Oscillations and Improved Orientation and Direction Selectivities in V1. J. Neurosci. 41, 2656–2667 (2021).
Kissinger, S. T., Pak, A., Tang, Y., Masmanidis, S. C. & Chubykin, A. A. Oscillatory Encoding of Visual Stimulus Familiarity. J. Neurosci. 38, 6223–6240 (2018).
Zimmerman, M. P. et al. Origin of visual experience-dependent theta oscillations. Curr. Biol. 35, 87–99.e6 (2025).
Pak, A. & Chubykin, A. A. Cortical Tuning is Impaired After Perceptual Experience in Primary Visual Cortex of Serotonin Transporter-Deficient Mice. Cereb. Cortex Commun. 1, tgaa066 (2020).
Pollak Dorocic, I. et al. A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron 83, 663–678 (2014).
Atasoy, S. et al. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci. Rep. 7, 17661 (2017).
Deco, G. et al. Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Curr. Biol. 28, 3065–3074.e6 (2018).
Jancke, D., Herlitze, S., Kringelbach, M. L. & Deco, G. Bridging the gap between single receptor type activity and whole-brain dynamics. FEBS J 289, 2067–2084 (2022).
Kringelbach, M. L. et al. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci. 117, 9566–9576 (2020).
Kringelbach, M. L. & Deco, G. Brain States and Transitions: Insights from Computational Neuroscience. Cell Rep 32, 108128 (2020).
Ly, S., Pishdari, B., Lok, L. L., Hajos, M. & Kocsis, B. Activation of 5-HT6 Receptors Modulates Sleep–Wake Activity and Hippocampal Theta Oscillation. ACS Chem. Neurosci. 4, 191–199 (2013).
Sörman, E., Wang, D., Hajos, M. & Kocsis, B. Control of hippocampal theta rhythm by serotonin: Role of 5-HT2c receptors. Neuropharmacology 61, 489–494 (2011).
Azimi, Z. et al. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 9, e53552 (2020).
Michaiel, A. M., Parker, P. R. L. & Niell, C. M. A Hallucinogenic Serotonin-2A Receptor Agonist Reduces Visual Response Gain and Alters Temporal Dynamics in Mouse V1. Cell Rep 26, 3475–3483.e4 (2019).
Seillier, L. et al. Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1. J. Neurosci. 37, 11390–11405 (2017).
Watakabe, A. et al. Enriched Expression of Serotonin 1B and 2A Receptor Genes in Macaque Visual Cortex and their Bidirectional Modulatory Effects on Neuronal Responses. Cereb. Cortex 19, 1915–1928 (2009).
Waterhouse, B. D., Ausim Azizi, S., Burne, R. A. & Woodward, D. J. Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res 514, 276–292 (1990).
Fournier, J. et al. Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations. Curr. Biol. 30, 3811–3817.e6 (2020).
Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).
Sharp, T. & Ippolito, A. Neuropsychopharmacology of hallucinogenic and non-hallucinogenic 5-HT2A receptor agonists. Br. J. Pharmacol. https://doi.org/10.1111/bph.70050 (2025).
González-Maeso, J. et al. Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior. Neuron 53, 439–452 (2007).
Garcia, E. E., Smith, R. L. & Sanders-Bush, E. Role of Gq protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52, 1671–1677 (2007).
López-Giménez, J. F. & González-Maeso, J. Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. in Behavioral Neurobiology of Psychedelic Drugs (eds. Halberstadt, A. L., Vollenweider, F. X. & Nichols, D. E.) 45–73 (Springer, Berlin, Heidelberg, https://doi.org/10.1007/7854_2017_4782018).
Bernasconi, F. et al. Theta oscillations and minor hallucinations in Parkinson’s disease reveal decrease in frontal lobe functions and later cognitive decline. Nat. Ment. Health 1, 477–488 (2023).
van Ommen, M. M., van Laar, T., Renken, R., Cornelissen, F. W. & Bruggeman, R. Visual Hallucinations in Psychosis: The Curious Absence of the Primary Visual Cortex. Schizophr. Bull. 49, S68–S81 (2023).
de Filippo, R. et al. Somatostatin interneurons activated by 5-HT2A receptor suppress slow oscillations in medial entorhinal cortex. eLife 10, e66960 (2021).
Grandjean, J. et al. A brain-wide functional map of the serotonergic responses to acute stress and fluoxetine. Nat. Commun. 10, 350 (2019).
Roth, G. I., Walton, P. L. & Yamamoto, W. S. Area postrema: Abrupt EEG synchronization following close intra-arterial perfusion with serotonin. Brain Res 23, 223–233 (1970).
Salomon, R. M. & Cowan, R. L. Oscillatory serotonin function in depression. Synapse 67, 801–820 (2013).
Vanderwolf, C. H. The electrocorticogram in relation to physiology and behavior: a new analysis. Electroencephalogr. Clin. Neurophysiol. 82, 165–175 (1992).
Vanderwolf, C. H. & Baker, G. B. Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res 374, 342–356 (1986).
Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108, 2323–2337 (2012).
Knöpfel, T. & Song, C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 20, 719–727 (2019).
Ortega, B. A., Weisstaub, N. V. & Katche, C. Retrosplenial cortex 5-HT2A receptors critically contribute to recognition memory processing. Front. Cell. Neurosci. 19, 1711777 (2025).
Kienitz, R. et al. Theta, but Not Gamma Oscillations in Area V4 Depend on Input from Primary Visual Cortex. Curr. Biol. 31, 635–642.e3 (2021).
Spyropoulos, G., Bosman, C. A. & Fries, P. A theta rhythm in macaque visual cortex and its attentional modulation. Proc. Natl. Acad. Sci. 115, E5614–E5623 (2018).
Han, H.-B., Lee, K. E. & Choi, J. H. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. eNeuro 6, 6 (2019).
Schmitz, G. P. et al. Psychedelic compounds directly excite 5-HT2A layer V medial prefrontal cortex neurons through 5-HT2A Gq activation. Transl. Psychiatry 15, 381 (2025).
Al-Imam, A. Could Hallucinogens Induce Permanent Pupillary Changes in (Ab)users? A Case Report from New Zealand. Case Rep. Neurol. Med. 2017, 2503762 (2017).
Bagur, S. et al. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12, 2605 (2021).
Karalis, N. & Sirota, A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat. Commun. 13, 467 (2022).
Leupin, V. & Britz, J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc. Natl. Acad. Sci. 121, e2311953121 (2024).
Joshi, A. et al. Dynamic synchronization between hippocampal representations and stepping. Nature 617, 125–131 (2023).
Forli, A., Fan, W., Qi, K. K. & Yartsev, M. M. Replay and representation dynamics in the hippocampus of freely flying bats. Nature 1–7 https://doi.org/10.1038/s41586-025-09341-z.(2025).
Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R. & Carhart-Harris, R. L. DMT alters cortical travelling waves. eLife 9, e59784 (2020).
Pais, M. L. et al. Rapid effects of tryptamine psychedelics on perceptual distortions and early visual cortical population receptive fields. NeuroImage 297, 120718 (2024).
Fehérvári, T. D., Okazaki, Y., Sawai, H. & Yagi, T. In Vivo Voltage-Sensitive Dye Study of Lateral Spreading of Cortical Activity in Mouse Primary Visual Cortex Induced by a Current Impulse. PLOS ONE 10, e0133853 (2015).
Liang, Y. et al. Complexity of cortical wave patterns of the wake mouse cortex. Nat. Commun. 14, 1434 (2023).
Bringuier, V., Chavane, F., Glaeser, L. & Frégnac, Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695–699 (1999).
Jancke, D., Chavane, F., Naaman, S. & Grinvald, A. Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426 (2004).
Benucci, A., Frazor, R. A. & Carandini, M. Standing Waves and Traveling Waves Distinguish Two Circuits in Visual Cortex. Neuron 55, 103–117 (2007).
Muller, L., Reynaud, A., Chavane, F. & Destexhe, A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014).
Grinvald, A., Lieke, E. E., Frostig, R. D. & Hildesheim, R. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14, 2545–2568 (1994).
Fakche, C. & Dugué, L. Perceptual Cycles Travel Across Retinotopic Space. J. Cogn. Neurosci. 36, 200–216 (2024).
Girard, P., Hupé, J. M. & Bullier, J. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85, 1328–1331 (2001).
Alexander, A. S., Place, R., Starrett, M. J., Chrastil, E. R. & Nitz, D. A. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 111, 150–175 (2023).
Spens, E. & Burgess, N. A generative model of memory construction and consolidation. Nat. Hum. Behav. 8, 526–543 (2024).
Freo, U., Holloway, H. W., Kalogeras, K., Rapoport, S. I. & Soncrant, T. T. Adrenalectomy or metyrapone-pretreatment abolishes cerebral metabolic responses to the serotonin agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in the hippocampus. Brain Res 586, 256–264 (1992).
Carhart-Harris, R. L. & Friston, K. J. REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelicss. Pharmacol. Rev. 71, 316–344 (2019).
Deco, G. et al. Awakening: Predicting external stimulation to force transitions between different brain states. Proc. Natl. Acad. Sci. 116, 18088–18097 (2019).
Carhart-Harris, R. L. et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).
Mishina, Y., Mutoh, H., Song, C. & Knöpfel, T. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain. Front. Mol. Neurosci. 7, 78 (2014).
Song, C., Piscopo, D. M., Niell, C. M. & Knöpfel, T. Cortical signatures of wakeful somatosensory processing. Sci. Rep. 8, 11977 (2018).
Barzan, R. et al. Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT2A). Nat. Commun. 15, 8078 (2024).
Eickelbeck, D. et al. CaMello-XR enables visualization and optogenetic control of Gq/11 signals and receptor trafficking in GPCR-specific domains. Commun. Biol. 2, 1–16 (2019).
Aulakh, C. S., Hill, J. L., Yoney, H. T. & Murphy, D. L. Evidence for involvement of 5-HT1C and 5-HT2 receptors in the food intake suppressant effects of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Psychopharmacology (Berl.) 109, 444–448 (1992).
Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell 181, 936–953.e20 (2020).
Acknowledgements
We thank Stefan Dobers and Henning Knoop and the RUB mechanical shop for technical support. This work was supported by Deutsche Forschungsgemeinschaft (DFG) grants: Project ID 122679504 - SFB 874, D.J.; JA 945/5-1, D.J.; “MoNN&Di”, Project number 492434978 - GRK 2862/1, Subproject 10, D.J.; BMBF, ERA-Net Neuron “Horizon 2020”, 01EW2104B, D.J.; US National Institutes of Health BRAIN Initiative Grant (5U01NS099573), T.K.; Lee Kuan Yew Postdoctoral Fellowship administered by Nanyang Technological University Singapore (022506-00001), C.S.; Open Fund Young Individual Research Grant (MOH-001720) administered by the Singapore Ministry of Health’s National Medical Research Council, C.S.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
These authors contributed equally: Zohre Azimi, Robert Staadt and Callum M. White. These authors jointly supervised this work: Dirk Jancke and Thomas Knöpfel. Conceptualization: T.K. and D.J. Data curation: C.M.W. and D.J. Formal analysis: C.M.W. and D.J. Data acquisition: Z.A. and R.S. Data visualization: C.M.W. and D.J. Software: C.M.W., T.K. and R.S. Supervision: T.K. and D.J. Funding acquisition and resources: C.S. T.K. and D.J. Writing—original draft: C.M.W., C.S., T.K. and D.J.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks Hio-Been Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Jasmine Pan. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
White, C.M., Azimi, Z., Staadt, R. et al. Psychedelic 5-HT2A agonist increases spontaneous and evoked 5-Hz oscillations in visual and retrosplenial cortex. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09492-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-025-09492-9


