Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Development of capsaicin-derived prohibitin ligands to modulate the Aurora kinase A/PHB2 interaction and mitophagy in cancer cells
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

Development of capsaicin-derived prohibitin ligands to modulate the Aurora kinase A/PHB2 interaction and mitophagy in cancer cells

  • Amel Djehal1,2 na1,
  • Claire Caron  ORCID: orcid.org/0009-0007-3069-61083 na1,
  • Deborah Giordano4,
  • Valentina Pizza3,4,
  • Kimberley Farin2,
  • Angelo Facchiano  ORCID: orcid.org/0000-0002-7077-49124,
  • Laurent Désaubry  ORCID: orcid.org/0000-0002-1192-29702 &
  • …
  • Giulia Bertolin  ORCID: orcid.org/0000-0002-7359-57333 

Communications Biology , Article number:  (2026) Cite this article

  • 609 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Breast cancer
  • Chemical modification
  • Microscopy
  • Mitochondria

Abstract

Aurora kinase A/AURKA is a serine/threonine kinase frequently overexpressed in cancer. Recent discoveries pointed to subcellular pools of AURKA, including at mitochondria. There, AURKA induces organelle clearance by mitophagy together with the autophagy mediator LC3, and its receptor PHB2.

Here, we show that the natural product capsaicin modifies the AURKA/PHB2 interaction. We synthesize 16 capsaicin analogs, and Förster’s Resonance Energy Transfer/Fluorescence Lifetime Imaging Microscopy (FRET/FLIM) in breast cancer cells reveals that compounds 12 and 13 increase the AURKA/PHB2 interaction. Molecular docking shows that they bind to the inhibitory pocket of PHB2 and to the AURKA active site. We demonstrate that compound 13 specifically inhibits mitophagy while leaving AURKA activation unaltered at centrosomes. Our results demonstrate that compound 13 is a PHB ligand acting on the AURKA/PHB2 interaction. Thanks to its specificity, it may lead to the development of anticancer drugs targeting the mitochondrial functions of AURKA.

Similar content being viewed by others

Aurora kinase A/AURKA functionally interacts with the mitochondrial ATP synthase to regulate energy metabolism and cell death

Article Open access 29 June 2023

AURKAIP1 actuates tumor progression through stabilizing DDX5 in triple negative breast cancer

Article Open access 01 December 2023

Exploration of the structural requirements of Aurora Kinase B inhibitors by a combined QSAR, modelling and molecular simulation approach

Article Open access 21 September 2021

Data availability

Source microscopy data are available on Zenodo52 (https://doi.org/10.5281/zenodo.17610406). All other data are available from the corresponding authors (L.D. and G.B.) upon request.

References

  1. Wang, T., Ma, F. & Qian, H. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. Mol. Ther. Oncol. 23, 82–95 (2021).

    Google Scholar 

  2. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    Google Scholar 

  3. Wang, S. et al. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target Ther. 8, 1–28 (2023).

    Google Scholar 

  4. Wei, Y., Chiang, W.-C., Sumpter, R., Mishra, P. & Levine, B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224–238.e10 (2017).

    Google Scholar 

  5. Wang, D. et al. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell. Mol. Life Sci. 77, 3525–3546 (2020).

    Google Scholar 

  6. Bertolin, G. et al. Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and prohibitin 2. Life Sci. Alliance https://doi.org/10.26508/lsa.202000806 (2021).

  7. Kashatus, D. F. et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115 (2011).

    Google Scholar 

  8. Nikonova, A. S., Astsaturov, I., Serebriiskii, I. G., Dunbrack, R. L. & Golemis, E. A. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 70, 661–687 (2013).

    Google Scholar 

  9. Bertolin, G., et al. Aurora kinase A localises to mitochondria to control organelle dynamics and energy production. eLife 7, e38111 (2018).

  10. Grant, R. et al. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus. Open Biol. 8, 170272 (2018).

    Google Scholar 

  11. Bertolin, G. & Tramier, M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell. Mol. Life Sci. 77, 1031–1047 (2020).

    Google Scholar 

  12. Chouha, N. et al. Development of fluorizoline analogues as prohibitin ligands that modulate C-RAF signaling, p21 expression and melanogenesis. Eur. J. Med. Chem. 242, 114635 (2022).

    Google Scholar 

  13. Tabti, R. et al. Development of prohibitin ligands against osteoporosis. Eur. J. Med. Chem. 210, 112961 (2021).

    Google Scholar 

  14. Yurugi, H. et al. A subset of flavaglines inhibits KRAS nanoclustering and activation. J. Cell Sci. 133, jcs244111 (2020).

    Google Scholar 

  15. Elderwish, S., Audebrand, A., Nebigil, C. G. & Désaubry, L. Discovery of 3,3′-pyrrolidinyl-spirooxindoles as cardioprotectant prohibitin ligands. Eur. J. Med. Chem. 186, 111859 (2020).

    Google Scholar 

  16. Djehal, A. et al. Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells. Eur. J. Med. Chem. 155, 880–888 (2018).

    Google Scholar 

  17. Padilla-Parra, S., Audugé, N., Coppey-Moisan, M. & Tramier, M. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys. J. 95, 2976–2988 (2008).

    Google Scholar 

  18. Leray, A., Padilla-Parra, S., Roul, J., Héliot, L. & Tramier, M. Spatio-temporal quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected]. PLoS ONE 8, e69335 (2013).

    Google Scholar 

  19. Kuramori, C. et al. Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus. Biochem. Biophys. Res. Commun. 379, 519–525 (2009).

    Google Scholar 

  20. Janusz, J. M. et al. Vanilloids. 1. Analogs of capsaicin with antinociceptive and antiinflammatory activity. J. Med. Chem. 36, 2595–2604 (1993).

    Google Scholar 

  21. Padilla-Parra, S. et al. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition. Biophys. J. 97, 2368–2376 (2009).

    Google Scholar 

  22. Nguyen, T. A., Puhl, H. L., Hines, K., Liput, D. J. & Vogel, S. S. Binary-FRET reveals transient excited-state structure associated with activity-dependent CaMKII - NR2B binding and adaptation. Nat. Commun. 13, 6335 (2022).

    Google Scholar 

  23. Amantini, C. et al. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J. Neurochem. 102, 977–990 (2007).

    Google Scholar 

  24. Xu, S. et al. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell. Signal. 75, 109733 (2020).

    Google Scholar 

  25. Yang, W. et al. Non-classical ferroptosis inhibition by a small molecule targeting PHB2. Nat. Commun. 13, 7473 (2022).

    Google Scholar 

  26. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Google Scholar 

  27. Bertolin, G. et al. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells. Nat. Commun. 7, 12674 (2016).

    Google Scholar 

  28. Cheetham, G. M. T. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. J. Biol. Chem. 277, 42419–42422 (2002).

    Google Scholar 

  29. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. cell 12, 851–862 (2003).

    Google Scholar 

  30. Zhang, Y. et al. Identification of the auto-inhibitory domains of Aurora-A kinase. Biochem. Biophys. Res. Commun. 357, 347–352 (2007).

    Google Scholar 

  31. Damodaran, A. P., Vaufrey, L., Gavard, O. & Prigent, C. Aurora A kinase is a priority pharmaceutical target for the treatment of cancers. Trends Pharmacol. Sci. 38, 687–700 (2017).

    Google Scholar 

  32. Sharma, R. K., Chafik, A. & Bertolin, G. Aurora kinase A/AURKA functionally interacts with the mitochondrial ATP synthase to regulate energy metabolism and cell death. Cell Death Discov. 9, 1–12 (2023).

    Google Scholar 

  33. Islam, A., Su, A. J., Zeng, Z.-M., Chueh, P. J. & Lin, M.-H. Capsaicin targets tNOX (ENOX2) to inhibit G1 cyclin/CDK complex, as assessed by the Cellular Thermal Shift Assay (CETSA). Cells 8, 1275 (2019).

    Google Scholar 

  34. Jia, G., Cang, S., Ma, P. & Song, Z. Capsaicin: a “hot” KDM1A/LSD1 inhibitor from peppers. Bioorg. Chem. 103, 104161 (2020).

    Google Scholar 

  35. Chen, H. Y. et al. Capsaicin inhibited aggressive phenotypes through downregulation of tumor-associated NADH oxidase (tNOX) by POU domain transcription factor POU3F2. Molecules 21, 733 (2016).

    Google Scholar 

  36. Yang, F. et al. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat. Chem. Biol. 11, 518–524 (2015).

    Google Scholar 

  37. Durel, B., Kervrann, C. & Bertolin, G. Quantitative dSTORM super-resolution microscopy localizes Aurora kinase A/AURKA in the mitochondrial matrix. Biol. Cell 113, 458–473 (2021).

    Google Scholar 

  38. Bertolin, G., Marchand, G. L., & Tramier, M. Real-time monitoring of aurora kinase a activation using conformational fret biosensors in live cells. J. Vis. Exp. 161, e61611 (2020).

  39. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Google Scholar 

  40. Kim, S. et al. PubChem 2023 update. Nucleic Acids Res. 51, D1373–D1380 (2023).

    Google Scholar 

  41. Kwon, S., Jung, N., Yang, J., and Seok, C. GalaxySagittarius-AF: predicting targets for drug-like compounds in the extended human 3D proteome. J. Mol. Biol. 436, 168617 (2024).

  42. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Google Scholar 

  43. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  44. Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 15, 1829–1852 (2020).

    Google Scholar 

  45. Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics https://doi.org/10.1002/0471250953.bi0506s15 (2006).

    Google Scholar 

  46. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Google Scholar 

  47. Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407–W410 (2007).

    Google Scholar 

  48. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Google Scholar 

  49. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Google Scholar 

  50. Goedhart, J. SuperPlotsOfData – a web app for the transparent display and quantitative comparison of continuous data from different conditions. https://doi.org/10.1091/mbc.E20-09-0583 (2021).

  51. Lord, S. J., Velle, K. B., Mullins, R. D. & Fritz-Laylin, L. K. SuperPlots: Communicating reproducibility and variability in cell biology. J. Cell Biol. 219, e202001064 (2020).

    Google Scholar 

  52. Caron, C., Bertolin, G. & Djehal, C. et al. Raw images (Zenodo) https://doi.org/10.5281/ZENODO.17610405 (2025).

Download references

Acknowledgements

We thank S. Dutertre, X. Pinson, and G. Le Marchand at the Microscopy Rennes Imaging Center (MRic, BIOSIT, Biogenouest) for assistance with FLIM experiments. MRic is a member of the national infrastructure France-BioImaging, supported by the French National Research Agency (ANR-24-INBS-0005 FBI BIOGEN). We thank the Plateforme de chimie biologique integrative (PCBIS, University of Strasbourg) for assistance with cell proliferation and viability experiments. We are grateful to N. Jolivet (IGDR, Rennes) for critical reading of the manuscript, to C. Bertin (IGDR, Rennes) for technical assistance, and to all lab members for helpful comments. This work was supported by the Centre National de la Recherche Scientifique (CNRS), the University of Rennes, the Ligue Contre le Cancer, Comités d’Ille et Vilaine et du Finistère to G.B. C.C was supported by a PhD fellowship from the Ligue Nationale Contre le Cancer (grant n. IP/SC – 17653) and by the Fondation ARC pour la Recherche sur le Cancer.

Author information

Author notes
  1. These authors contributed equally: Amel Djehal, Claire Caron.

Authors and Affiliations

  1. Higher National School of Biotechnology of Constantine, Constantine, 25100, Algeria

    Amel Djehal

  2. Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, 67084, France

    Amel Djehal, Kimberley Farin & Laurent Désaubry

  3. CNRS, Univ Rennes, IGDR [(Institut de Génétique et Développement de Rennes)] - UMR 6290, Rennes, F-35000, France

    Claire Caron, Valentina Pizza & Giulia Bertolin

  4. National Research Council, Institute of Food Science, Avellino, 83100, Italy

    Deborah Giordano, Valentina Pizza & Angelo Facchiano

Authors
  1. Amel Djehal
    View author publications

    Search author on:PubMed Google Scholar

  2. Claire Caron
    View author publications

    Search author on:PubMed Google Scholar

  3. Deborah Giordano
    View author publications

    Search author on:PubMed Google Scholar

  4. Valentina Pizza
    View author publications

    Search author on:PubMed Google Scholar

  5. Kimberley Farin
    View author publications

    Search author on:PubMed Google Scholar

  6. Angelo Facchiano
    View author publications

    Search author on:PubMed Google Scholar

  7. Laurent Désaubry
    View author publications

    Search author on:PubMed Google Scholar

  8. Giulia Bertolin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

CRediT taxonomy: conceptualization (L.D. and G.B.) data curation (A.D., C.C., D.G., V.P., K.F., A.F., L.D., and G.B.), Formal analysis (A.D., C.C., D.G, V.P., K.F., A.F., L.D., and G.B.), Funding acquisition (L.D. and G.B.), Investigation (A.D., C.C., D.G., V.P., K.F., A.F., L.D., and G.B.), Methodology (A.F., L.D., and G.B.), Project administration (L.D. and G.B.), Resources (L.D. and G.B.), Software (C.C., D.G., V.P., A.F., and G.B.), Supervision (A.F, L.D., and G.B.), Validation (L.D. and G.B.), Visualization (C.C., D.G., V.P., A.F., L.D., and G.B.), Writing–original, review and editing (C.C., D.G, A.F., L.D., and G.B.).

Corresponding authors

Correspondence to Laurent Désaubry or Giulia Bertolin.

Ethics declarations

Competing interests

The authors declare no competing or financial interests. G. Bertolin is an Editorial Board Member for Communications Biology, but was not involved in the editorial review of, nor the decision to publish this article.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Laura Rodríguez Pérez.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Description of Additional Supplementary Files

Supplementary Data

Reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djehal, A., Caron, C., Giordano, D. et al. Development of capsaicin-derived prohibitin ligands to modulate the Aurora kinase A/PHB2 interaction and mitophagy in cancer cells. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09573-3

Download citation

  • Received: 23 September 2024

  • Accepted: 12 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s42003-026-09573-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer