Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Tbr2-dependent parallel pathways regulate the development of distinct ipRGC subtypes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 01 February 2026

Tbr2-dependent parallel pathways regulate the development of distinct ipRGC subtypes

  • Takae Kiyama1,
  • Ching-Kang Chen  ORCID: orcid.org/0000-0001-7393-99142,
  • Halit Y. Altay1,
  • Yu-Jiun Chen2,
  • Leviette Sigala2,
  • Dan Su3,
  • Steven Eliason3,
  • Brad A. Amendt  ORCID: orcid.org/0000-0001-6524-10063 &
  • …
  • Chai-An Mao  ORCID: orcid.org/0000-0002-9700-69641,4 

Communications Biology , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell fate and cell lineage
  • Developmental neurogenesis

Abstract

The intrinsically photosensitive retinal ganglion cells (ipRGC) are the conduit between the retina and brain regions responsible for non-image-forming and image-forming vision. In mice, six ipRGC subtypes have been discovered based on morphological characteristics, functions, and molecular profiles. All ipRGCs arise from Tbr2-expressing RGCs during developmental stages and subsequently diverge and differentiate into the six mature, distinct subtypes in adult retinas. However, the cellular and molecular mechanisms controlling the formation and maturation of the six ipRGC subtypes remain elusive. Here, we demonstrate that two Tbr2-dependent transcription factors, Iroquois‑related homeobox 1 (Irx1) and T-box containing factor 20 (Tbx20), are key downstream transcription factors guiding lineage segregations of Tbr2-expressing RGC into distinct adult ipRGC subtypes. Both factors also control Opn4 expression. Irx1 is expressed in the M3, M4, and M5 subtypes, while Tbx20 is predominantly expressed in M1, M2, M6, and subgroups of M3 and M5. When Irx1 is ablated during retinal development, Opn4 expression is significantly reduced in the M3, M4, and M5 ipRGC groups; however, the formation of Irx1-expressing ipRGCs is not affected. In contrast, when Tbx20 is deleted, a significant number of Tbx20-expressing cells fail to develop while Opn4 expression is down-regulated. These findings reveal two parallel transcription cascades downstream of Tbr2 for controlling ipRGC subtype formation, fate divergence, and maintenance in the adult retina.

Data availability

The raw datasets and normalized count data for the bulk RNA-seq have been deposited in the NCBI Gene Expression Omnibus repository (GSE149388). The source data can be available in the supplementary data.

References

  1. Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M. & Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595 (1996).

    Google Scholar 

  2. Brown, N. L. et al. Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Dev. 125, 4821–4833 (1998).

    Google Scholar 

  3. Wang, S. W. et al. Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 15, 24–29 (2001).

    Google Scholar 

  4. Yang, Z., Ding, K., Pan, L., Deng, M. & Gan, L. Math5 determines the competence state of retinal ganglion cell progenitors. Dev. Biol. 264, 240–254 (2003).

    Google Scholar 

  5. Ge, Y. et al. The shifting epigenetic landscape and roles of key transcription factors during early retinal cell differentiation. bioRxiv, 2022.2003.2005.483140, (2022).

  6. Baden, T. et al. The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016).

    Google Scholar 

  7. Huberman, A. D. et al. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425–438 (2008).

    Google Scholar 

  8. Triplett, J. W. et al. Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev. 9, 2 (2014).

    Google Scholar 

  9. Völgyi, B., Chheda, S. & Bloomfield, S. A. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512, 664–687 (2009).

    Google Scholar 

  10. Badea, T. C. & Nathans, J. Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vis. Res. 51, 269–279 (2011).

    Google Scholar 

  11. Coombs, J., van der List, D., Wang, G. Y. & Chalupa, L. M. Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123–136 (2006).

    Google Scholar 

  12. Kim, I. J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J. R. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008).

    Google Scholar 

  13. Lucas, J. A. & Schmidt, T. M. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Dev. 14, 8 (2019).

    Google Scholar 

  14. Sonoda, T., Okabe, Y. & Schmidt, T. M. Overlapping morphological and functional properties between M4 and M5 intrinsically photosensitive retinal ganglion cells. J. Comp. Neurol. 528, 1028–1040 (2020).

    Google Scholar 

  15. Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Google Scholar 

  16. Hattar, S. et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349 (2006).

    Google Scholar 

  17. Ecker, J. L. et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49–60 (2010).

    Google Scholar 

  18. Berson, D. M., Castrucci, A. M. & Provencio, I. Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J. Comp. Neurol. 518, 2405–2422 (2010).

    Google Scholar 

  19. Mu, X. & Klein, W. H. A gene regulatory hierarchy for retinal ganglion cell specification and differentiation. Semin. Cell Dev. Biol. 15, 115–123 (2004).

    Google Scholar 

  20. Lyu, J. & Mu, X. Genetic control of retinal ganglion cell genesis. Cell. Mol. Life Sci. 78, 4417–4433 (2021).

    Google Scholar 

  21. Kiyama, T., Altay, H. Y., Badea, T. C. & Mao, C. A. Pou4f1-Tbr1 transcriptional cascade controls the formation of Jam2-expressing retinal ganglion cells. Front. Ophthalmol. 3, https://doi.org/10.3389/fopht.2023.1175568 (2023).

  22. Mao, C. A. et al. T-box transcription regulator Tbr2 is essential for the formation and maintenance of Opn4/melanopsin-expressing intrinsically photosensitive retinal ganglion cells. J. Neurosci.: J. Soc. Neurosci. 34, 13083–13095 (2014).

    Google Scholar 

  23. Sweeney, N. T., Tierney, H. & Feldheim, D. A. Tbr2 is required to generate a neural circuit mediating the pupillary light reflex. J. Neurosci.:. J. Soc. Neurosci. 34, 5447–5453 (2014).

    Google Scholar 

  24. Mao, C. A. et al. Eomesodermin, a target gene of Pou4f2, is required for retinal ganglion cell and optic nerve development in the mouse. Development 135, 271–280 (2008).

    Google Scholar 

  25. Chen, C. K. et al. Characterization of Tbr2-expressing retinal ganglion cells. J. Comp. Neurol. 529, 3513–3532 (2021).

    Google Scholar 

  26. Shekhar, K., Whitney, I. E., Butrus, S., Peng, Y. R. & Sanes, J. R. Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types. eLife 11, https://doi.org/10.7554/eLife.73809 (2022).

  27. Theune, W. C., Frost, M. P. & Trakhtenberg, E. F. Transcriptomic profiling of retinal cells reveals a subpopulation of microglia/macrophages expressing Rbpms marker of retinal ganglion cells (RGCs) that confound identification of RGCs. Brain Res. 1811, 148377 (2023).

    Google Scholar 

  28. Lee, S. K. & Schmidt, T. M. Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes in Mice. Methods Mol. Biol. 1753, 275–287 (2018).

    Google Scholar 

  29. Estevez, M. E. et al. Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J. Neurosci.: J. Soc. Neurosci. 32, 13608–13620 (2012).

    Google Scholar 

  30. Schmidt, T. M. et al. A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82, 781–788 (2014).

    Google Scholar 

  31. Quattrochi, L. E. et al. The M6 cell: A small-field bistratified photosensitive retinal ganglion cell. J. Comp. Neurol. 527, 297–311 (2019).

    Google Scholar 

  32. Dyer, B., Yu, S. O., Brown, R. L., Lang, R. A. & D’Souza, S. P. Defining spatial nonuniformities of all ipRGC types using an improved Opn4(cre) recombinase mouse line. Cell Rep. Methods 4, 100837 (2024).

    Google Scholar 

  33. Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).

    Google Scholar 

  34. Hong, Y. K., Kim, I. J. & Sanes, J. R. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519, 1691–1711 (2011).

    Google Scholar 

  35. Tran, N. M. et al. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 104, 1039–1055.e1012 (2019).

    Google Scholar 

  36. Nimkar, K. et al. Molecular and spatial analysis of ganglion cells on retinal flatmounts identifies perivascular neurons resilient to glaucoma. Neuron 113, 3390–3407.e3398 (2025).

    Google Scholar 

  37. Whitney, I. E. et al. Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells. Neuroscience 508, 153–173 (2023).

    Google Scholar 

  38. Sessa, A., Mao, C. A., Hadjantonakis, A. K., Klein, W. H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008).

    Google Scholar 

  39. Sessa, A. et al. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev. 24, 1816–1826 (2010).

    Google Scholar 

  40. Sessa, A. et al. The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways. Cereb. Cortex 27, 5715 (2017).

    Google Scholar 

  41. Berg, D. J., Kartheiser, K., Leyrer, M., Saali, A. & Berson, D. M. Transcriptomic signatures of postnatal and adult intrinsically photosensitive ganglion cells. eNeuro 6, https://doi.org/10.1523/eneuro.0022-19.2019 (2019).

  42. Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

    Google Scholar 

  43. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Google Scholar 

  44. Costello, I. et al. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat. Cell Biol. 13, 1084–1091 (2011).

    Google Scholar 

  45. Nowotschin, S. et al. The T-box transcription factor Eomesodermin is essential for AVE induction in the mouse embryo. Genes Dev. 27, 997–1002 (2013).

    Google Scholar 

  46. Shen, J. et al. The orthologous Tbx transcription factors Omb and TBX2 induce epithelial cell migration and extrusion in vivo without involvement of matrix metalloproteinases. Oncotarget 5, 11998–12015 (2014).

    Google Scholar 

  47. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003).

    Google Scholar 

  48. Ciruna, B. & Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1, 37–49 (2001).

    Google Scholar 

  49. Lee, S., Chen, M., Shi, Y. & Zhou, Z. J. Selective glycinergic input from vGluT3 amacrine cells confers a suppressed-by-contrast trigger feature in a subtype of M1 ipRGCs in the mouse retina. J. Physiol. 599, 5047–5060 (2021).

    Google Scholar 

  50. Jiang, Z., Yue, W. W. S., Chen, L., Sheng, Y. & Yau, K. W. Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photosensitive Retinal Ganglion Cells. Cell 175, 652–664.e612 (2018).

    Google Scholar 

  51. Chen, L., Li, G., Jiang, Z. & Yau, K. W. Unusual phototransduction via cross-motif signaling from G(q) to adenylyl cyclase in intrinsically photosensitive retinalganglion cells. Proc. Natl. Acad. Sci. USA 120, e2216599120 (2023).

    Google Scholar 

  52. Li, G., Chen, L., Jiang, Z. & Yau, K. W. Coexistence within one cell of microvillous and ciliary phototransductions across M1- through M6-IpRGCs. Proc. Natl. Acad. Sci. USA 120, e2315282120 (2023).

    Google Scholar 

  53. Contreras, E., Bhoi, J. D., Sonoda, T., Birnbaumer, L. & Schmidt, T. M. Melanopsin activates divergent phototransduction pathways in intrinsically photosensitive retinal ganglion cell subtypes. eLife 12, https://doi.org/10.7554/eLife.80749 (2023).

  54. Sonoda, T., Lee, S. K., Birnbaumer, L. & Schmidt, T. M. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron 99, 754–767.e754 (2018).

    Google Scholar 

  55. Mu, X., Fu, X., Beremand, P. D., Thomas, T. L. & Klein, W. H. Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2. Proc. Natl. Acad. Sci. USA 105, 6942–6947 (2008).

    Google Scholar 

  56. Gao, Z., Mao, C. A., Pan, P., Mu, X. & Klein, W. H. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation. Dev. Neurobiol. 74, 1123–1140 (2014).

    Google Scholar 

  57. Li, R. et al. Isl1 and Pou4f2 form a complex to regulate target genes in developing retinal ganglion cells. PloS One 9, e92105 (2014).

    Google Scholar 

  58. Wu, F. et al. Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. Proc. Natl. Acad. Sci. USA 112, E1559–1568 (2015).

    Google Scholar 

  59. Aranda, M. L. et al. Genetic tuning of intrinsically photosensitive retinal ganglion cell subtype identity to drive visual behavior. bioRxiv, https://doi.org/10.1101/2024.04.25.590656 (2024).

  60. Chen, S. K., Badea, T. C. & Hattar, S. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92–95 (2011).

    Google Scholar 

  61. Lanier, J., Quina, L. A., Eng, S. R., Cox, E. & Turner, E. E. Brn3a target gene recognition in embryonic sensory neurons. Dev. Biol. 302, 703–716 (2007).

    Google Scholar 

  62. Yu, W. et al. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Dev. Biol. 429, 44–55 (2017).

    Google Scholar 

  63. Wang, L. et al. Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol. Dis. 29, 400–408 (2008).

    Google Scholar 

  64. Furuta, Y., Lagutin, O., Hogan, B. L. & Oliver, G. C. Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis 26, 130–132 (2000).

    Google Scholar 

  65. Badea, T. C. et al. New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PloS one 4, e7859 (2009).

    Google Scholar 

  66. Stennard, F. A. et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132, 2451–2462 (2005).

    Google Scholar 

  67. Kiyama, T. et al. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis. Mol. Neurodegen. 13, 56 (2018).

    Google Scholar 

  68. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e1821 (2019).

    Google Scholar 

  69. Badea, T. C., Cahill, H., Ecker, J., Hattar, S. & Nathans, J. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61, 852–864 (2009).

    Google Scholar 

  70. Jamal, L., Kiyama, T. & Mao, C. A. Genetically Directed Sparse Labeling System for Anatomical Studies of Retinal Ganglion Cells. Methods Mol. Biol. 2092, 187–194 (2020).

    Google Scholar 

  71. Kiyama, T. et al. Essential Roles of Tbr1 in the Formation and Maintenance of the Orientation-Selective J-RGCs and a Group of OFF-Sustained RGCs in Mouse. Cell Rep. 27, 900–915.e905 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to C.-A.M. (EY024376), C.-K.C (EY032898, EY034219), and B.A.A. (DE028527, DE026433, T90DE023520). This work was also supported in part by National Eye Institute Vision Core Grants P30EY028102 (UTHealth), the Hermann Eye Fund (UTHealth), and the Stephen Lasher Endowed Professorship (UTHealth). We acknowledge Dr. Jan Parker-Thornburg and the Genetically Engineered Mouse Facility at The University of Texas MD Anderson Cancer Center for making Irx1HA3-P2ACreERT2/+ and Tbx20HA3-P2ACreERT2/+ mouse lines. Irx1flox mouse was generated by GemPharmatech USA (San Diego, CA; Strain #: T008697). Tbx20flox was purchased from Jackson Lab (Bar Harbor, ME; Strain #:024665; RRID: IMSR_JAX:024665). Six3-Cre was a gift from Dr. Yas Furuta. Opn4Cre was a gift from Dr. Samer Hattar. RosaiAP was a gift from Dr. Tudor Badea. We thank Dr. Karthik Shekhar for sharing unpublished data and his valuable suggestions on scRNA-seq clustering. We thank Andrew Kim (UT McGovern Medical School) and Amber Lewis (UTHSC at San Antonio) for technical assistance.

Author information

Authors and Affiliations

  1. Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA

    Takae Kiyama, Halit Y. Altay & Chai-An Mao

  2. Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

    Ching-Kang Chen, Yu-Jiun Chen & Leviette Sigala

  3. Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA

    Dan Su, Steven Eliason & Brad A. Amendt

  4. The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA

    Chai-An Mao

Authors
  1. Takae Kiyama
    View author publications

    Search author on:PubMed Google Scholar

  2. Ching-Kang Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Halit Y. Altay
    View author publications

    Search author on:PubMed Google Scholar

  4. Yu-Jiun Chen
    View author publications

    Search author on:PubMed Google Scholar

  5. Leviette Sigala
    View author publications

    Search author on:PubMed Google Scholar

  6. Dan Su
    View author publications

    Search author on:PubMed Google Scholar

  7. Steven Eliason
    View author publications

    Search author on:PubMed Google Scholar

  8. Brad A. Amendt
    View author publications

    Search author on:PubMed Google Scholar

  9. Chai-An Mao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

T.K., C.K.C., and C.A.M. conceptualized and designed experiments. T.K., C.K.C., H.Y.A., D.S., S.E., B.A.A., L.S., Y.J.C., and C.A.M. executed experiments. C.A.M. and C.K.C. wrote the paper.

Corresponding author

Correspondence to Chai-An Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Xin Duan, Shane P. D’Souza, and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Benjamin Bessieres. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyama, T., Chen, CK., Altay, H.Y. et al. Tbr2-dependent parallel pathways regulate the development of distinct ipRGC subtypes. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09645-4

Download citation

  • Received: 28 May 2025

  • Accepted: 23 January 2026

  • Published: 01 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09645-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing