Table 1 Comparison of distribution learning metrics for each method across five benchmark datasets, MOSES, GuacaMol, Polymer, SuperNatural3, and ZINC250K
MOSES dataset | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Recon | Similar | Valid | Unique | Novelty | FCD | KL-Div. | logP | QED | NP | SA |
FRATTVAE | 0.9487 | 0.9847 | 1.0000 | 0.9997 | 0.9742 | 0.8654 | 0.9281 | 0.2032 | 0.0303 | 0.1853 | 2.591 |
JTVAE* | 0.5109 | 0.7418 | 0.9989 | 0.9997 | 0.9511 | 0.7933 | 0.9632 | 0.1319 | 0.0043 | 0.2954 | 2.728 |
PSVAE | 0.0250 | 0.2306 | 1.0000 | 0.9961 | 0.9898 | 0.2259 | 0.8314 | 0.4720 | 0.0966 | 0.9996 | 3.488 |
MoLeR | 0.1650 | 0.5262 | 1.0000 | 0.9997 | 0.9710 | 0.8525 | 0.9533 | 0.0944 | 0.0270 | 0.1622 | 2.485 |
SMIVAE | 0.0000 | 0.1287 | 0.2192 | 0.0838 | 1.0000 | 0.0000 | 0.1503 | 53.8212 | 0.7506 | 1.6976 | 4.618 |
SMITransVAE | 0.9920 | 0.9946 | 0.2635 | 0.9435 | 0.9955 | 0.0739 | 0.8122 | 0.6934 | 0.0775 | 0.7607 | 2.570 |
GuacaMol dataset | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
FRATTVAE | 0.7606 | 0.8976 | 1.0000 | 0.9997 | 0.9674 | 0.8242 | 0.9526 | 0.0905 | 0.0147 | 0.0965 | 2.981 |
PSVAE | 0.0335 | 0.1503 | 0.9999 | 0.9955 | 0.9893 | 0.2049 | 0.8110 | 0.8438 | 0.0702 | 0.5813 | 3.886 |
MoLeR* | 0.0252 | 0.3047 | 1.0000 | 0.9995 | 0.9900 | 0.6413 | 0.9638 | 0.1191 | 0.0353 | 0.2006 | 2.777 |
SMIVAE | 0.0000 | 0.0675 | 0.9967 | 0.0572 | 0.9883 | 0.0000 | 0.2349 | 2.6651 | 0.3963 | 0.9588 | 3.731 |
SMITransVAE | 0.9801 | 0.9865 | 0.4465 | 0.2686 | 0.9639 | 0.0008 | 0.5853 | 4.1386 | 0.1753 | 1.3113 | 2.978 |
Polymer dataset | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
FRATTVAE | 0.9766 | 0.9957 | 1.0000 | 0.9937 | 0.8782 | 0.9002 | 0.9571 | 0.2986 | 0.0085 | 0.0241 | 4.371 |
JTVAE | 0.4720 | 0.8182 | 0.9821 | 0.9743 | 0.8871 | 0.5150 | 0.9266 | 0.9349 | 0.0226 | 0.1668 | 5.156 |
HierVAE* | 0.7994 | 0.9487 | 1.0000 | 0.9644 | 0.6278 | 0.9101 | 0.9893 | 0.8820 | 0.0123 | 0.0245 | 4.306 |
PSVAE | 0.0006 | 0.1601 | 0.9973 | 0.6639 | 0.9900 | 0.0940 | 0.7630 | 4.8181 | 0.1352 | 0.1887 | 4.924 |
MoLeR | 0.4086 | 0.7787 | 1.0000 | 0.9325 | 0.5710 | 0.9019 | 0.9815 | 0.4652 | 0.0211 | 0.0377 | 4.190 |
SMIVAE | 0.8010 | 0.9462 | 1.0000 | 0.9452 | 0.8838 | 0.7836 | 0.9226 | 0.8143 | 0.0231 | 0.0792 | 4.146 |
SMITransVAE | 0.0006 | 0.2978 | 0.9674 | 0.0503 | 0.3380 | 0.2274 | 0.9061 | 4.5155 | 0.0433 | 0.0505 | 4.512 |
Natural Products dataset (SuperNatural3) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
FRATTVAE | 0.3221 | 0.7774 | 1.0000 | 0.9964 | 0.9273 | 0.7437 | 0.9216 | 0.9149 | 0.0265 | 0.1480 | 5.4715 |
SMIVAE | 0.1532 | 0.4929 | 0.6511 | 0.9983 | 0.8895 | 0.7080 | 0.9195 | 0.3669 | 0.0078 | 0.1837 | 5.2158 |
ZINC250K dataset | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
FRATTVAE | 0.7964 | 0.8944 | 1.0000 | 0.9991 | 0.9945 | 0.7163 | 0.9397 | 0.2979 | 0.0758 | 0.2937 | 3.3009 |
C-FRATTVAE | 0.7940 | 0.9041 | 1.0000 | 0.9999 | 0.9974 | 0.7283 | 0.9685 | 0.1351 | 0.0406 | 0.2426 | 3.2188 |
JTVAE* | 0.7798 | 0.8888 | 1.0000 | 0.9989 | 0.9997 | 0.4401 | 0.9060 | 0.6944 | 0.0312 | 0.4101 | 3.4113 |
HierVAE | 0.0000 | 0.1034 | 1.0000 | 0.0350 | 0.9988 | 0.0006 | 0.6232 | 1.1876 | 0.1192 | 0.6086 | 3.5890 |
PSVAE* | 0.0006 | 0.1398 | 1.0000 | 0.9958 | 0.9998 | 0.3053 | 0.8717 | 0.3218 | 0.0417 | 0.8091 | 3.9908 |
MoLeR | 0.0444 | 0.3664 | 1.0000 | 0.9998 | 0.9997 | 0.7293 | 0.9872 | 0.1367 | 0.0197 | 0.1442 | 3.0399 |
SMIVAE | 0.0184 | 0.3284 | 0.9815 | 0.9984 | 0.9962 | 0.7003 | 0.9337 | 0.0623 | 0.0329 | 0.0913 | 2.7755 |
SMITransVAE | 0.9718 | 0.9829 | 0.3638 | 0.7700 | 0.9987 | 0.0580 | 0.8010 | 1.1458 | 0.0718 | 0.6028 | 2.3858 |