Table 1 Comparison of distribution learning metrics for each method across five benchmark datasets, MOSES, GuacaMol, Polymer, SuperNatural3, and ZINC250K

From: Leveraging tree-transformer VAE with fragment tokenization for high-performance large chemical model generation

MOSES dataset

Model

Recon

Similar

Valid

Unique

Novelty

FCD

KL-Div.

logP

QED

NP

SA

FRATTVAE

0.9487

0.9847

1.0000

0.9997

0.9742

0.8654

0.9281

0.2032

0.0303

0.1853

2.591

JTVAE*

0.5109

0.7418

0.9989

0.9997

0.9511

0.7933

0.9632

0.1319

0.0043

0.2954

2.728

PSVAE

0.0250

0.2306

1.0000

0.9961

0.9898

0.2259

0.8314

0.4720

0.0966

0.9996

3.488

MoLeR

0.1650

0.5262

1.0000

0.9997

0.9710

0.8525

0.9533

0.0944

0.0270

0.1622

2.485

SMIVAE

0.0000

0.1287

0.2192

0.0838

1.0000

0.0000

0.1503

53.8212

0.7506

1.6976

4.618

SMITransVAE

0.9920

0.9946

0.2635

0.9435

0.9955

0.0739

0.8122

0.6934

0.0775

0.7607

2.570

GuacaMol dataset

FRATTVAE

0.7606

0.8976

1.0000

0.9997

0.9674

0.8242

0.9526

0.0905

0.0147

0.0965

2.981

PSVAE

0.0335

0.1503

0.9999

0.9955

0.9893

0.2049

0.8110

0.8438

0.0702

0.5813

3.886

MoLeR*

0.0252

0.3047

1.0000

0.9995

0.9900

0.6413

0.9638

0.1191

0.0353

0.2006

2.777

SMIVAE

0.0000

0.0675

0.9967

0.0572

0.9883

0.0000

0.2349

2.6651

0.3963

0.9588

3.731

SMITransVAE

0.9801

0.9865

0.4465

0.2686

0.9639

0.0008

0.5853

4.1386

0.1753

1.3113

2.978

Polymer dataset

FRATTVAE

0.9766

0.9957

1.0000

0.9937

0.8782

0.9002

0.9571

0.2986

0.0085

0.0241

4.371

JTVAE

0.4720

0.8182

0.9821

0.9743

0.8871

0.5150

0.9266

0.9349

0.0226

0.1668

5.156

HierVAE*

0.7994

0.9487

1.0000

0.9644

0.6278

0.9101

0.9893

0.8820

0.0123

0.0245

4.306

PSVAE

0.0006

0.1601

0.9973

0.6639

0.9900

0.0940

0.7630

4.8181

0.1352

0.1887

4.924

MoLeR

0.4086

0.7787

1.0000

0.9325

0.5710

0.9019

0.9815

0.4652

0.0211

0.0377

4.190

SMIVAE

0.8010

0.9462

1.0000

0.9452

0.8838

0.7836

0.9226

0.8143

0.0231

0.0792

4.146

SMITransVAE

0.0006

0.2978

0.9674

0.0503

0.3380

0.2274

0.9061

4.5155

0.0433

0.0505

4.512

Natural Products dataset (SuperNatural3)

FRATTVAE

0.3221

0.7774

1.0000

0.9964

0.9273

0.7437

0.9216

0.9149

0.0265

0.1480

5.4715

SMIVAE

0.1532

0.4929

0.6511

0.9983

0.8895

0.7080

0.9195

0.3669

0.0078

0.1837

5.2158

ZINC250K dataset

FRATTVAE

0.7964

0.8944

1.0000

0.9991

0.9945

0.7163

0.9397

0.2979

0.0758

0.2937

3.3009

C-FRATTVAE

0.7940

0.9041

1.0000

0.9999

0.9974

0.7283

0.9685

0.1351

0.0406

0.2426

3.2188

JTVAE*

0.7798

0.8888

1.0000

0.9989

0.9997

0.4401

0.9060

0.6944

0.0312

0.4101

3.4113

HierVAE

0.0000

0.1034

1.0000

0.0350

0.9988

0.0006

0.6232

1.1876

0.1192

0.6086

3.5890

PSVAE*

0.0006

0.1398

1.0000

0.9958

0.9998

0.3053

0.8717

0.3218

0.0417

0.8091

3.9908

MoLeR

0.0444

0.3664

1.0000

0.9998

0.9997

0.7293

0.9872

0.1367

0.0197

0.1442

3.0399

SMIVAE

0.0184

0.3284

0.9815

0.9984

0.9962

0.7003

0.9337

0.0623

0.0329

0.0913

2.7755

SMITransVAE

0.9718

0.9829

0.3638

0.7700

0.9987

0.0580

0.8010

1.1458

0.0718

0.6028

2.3858

  1. Distribution learning metrics comparison for each method trained on five benchmark datasets, MOSES, GuacaMol, Polymer, SuperNatural3, and ZINC250K. Metrics include reconstruction accuracy (Recon), similarity (Similar), validity (Valid), uniqueness (Unique), novelty (Novelty), Fréchet ChemNet Distance (FCD), KL divergence (KL-Div.), logP, QED, NP (NP-likeness), and SA (SAscore). For three metrics (logP, QED, and NP-likeness), we used the 1D Wasserstein-1 distance between the metric distributions of the generated and test sets, rather than their absolute values. Models marked with an ‘*’ indicate the use of pretrained models.
  2. JTVAE was unable to handle GuacaMol and Natural Products datasets. HierVAE was unable to handle MOSES, GuacaMol and Natural Products datasets. PSVAE and MoLeR were unable to handle Natural Products dataset. SMITransVAE was unable to handle Polymer and Natural Products datasets.