Table 1 QD-sensitized photoelectrodes applied to PEC water decontamination
From: Role of quantum dots in photoelectrocatalytic technology
Photoelectrode | Preparation method | Achieved photocurrent density | Application | Reference |
|---|---|---|---|---|
WO3/Ti3C2/In2S3 | Hydrothermal | 0.32 mA cm−2 | Removal of bisphenol A and hexavalent chromium | |
B-Bi2Sn2O7-OV@Ni | Hydrothermal | 18.9 µA cm−2 | Sulfamethazine degradation | |
NCDs/TiO2 NA-VO | Simple immersion | 0.56 mA cm−2 | Tetracycline degradation | |
TiO2/g-C3N4/CQDs | Simple immersion | 0.16 mA cm−2 | 1,4-dioxane degradation | |
CQDs/g-C3N4 | Dip-coating | – | Methylene blue degradation | |
WO3/TiO2-CQDs | Dielectric barrier discharge | 2.51 mA cm−2 | Bisphenol A degradation | |
Bi2Sn2O7/TiO2 | Hydrothermal | 68.7 µA cm−2 | Sulfamethazine degradation | |
PbS-Ti/TiO2 | SILAR | 1.25 mA cm−2 | Decomposition of anticancer pharmaceutics | |
Bi2Te3/TiO2 Bi2Se3/TiO2 | Spin-coating | 0.86 mA cm−2 1.0 mA cm−2 | Azo dye degradation | |
CdS/BiOI/WO3 | SILAR | 0.713 mA cm−2 | Methylene blue degradation |