Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
Single-particle chemical analysis reveals organic-rich detonation soot products
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Single-particle chemical analysis reveals organic-rich detonation soot products

  • Ryan N. Farley  ORCID: orcid.org/0000-0002-0832-52861,
  • James E. Lee  ORCID: orcid.org/0000-0002-9137-15301,
  • Rachel C. Huber1,
  • Madeline A. Stricklin1,
  • Kimberly N. Wurth1 &
  • …
  • Allison C. Aiken  ORCID: orcid.org/0000-0001-5749-76261 

Communications Chemistry , Article number:  (2026) Cite this article

  • 1133 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric chemistry
  • Imaging studies
  • Mass spectrometry

Abstract

The detonation of high explosives produces a wide variety of particulate matter (PM) with distinct properties, not all of which are traditionally studied for chemical composition, formation processes, and forensic applications. We report particle-resolved measurements of Composition B detonation soot using soot particle aerosol mass spectrometry (SP-AMS), identifying carbonaceous species and metals not previously characterized on a single-particle basis. Results are combined with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) to enhance source-dependent signatures. Black carbon, including graphitic carbon and detonation nanodiamonds, contributed 50.5-71.4% of PM2.5 mass, while 22.5-43.4% was non-refractory organic carbon, a previously overlooked component that exhibited a complex and varying composition. Detonations were performed with and without PMMA confinement and under steady and overdriven conditions. Distinct particles enriched with polycyclic aromatic hydrocarbons (PAHs) were observed in experiments utilizing confinement, with quantities dependent on manufacturing method. SEM-EDS validated SP-AMS findings of metals internally mixed with carbonaceous species and extended the particle size range to 100 µm. This work makes detecting non-refractory organics using single-particle techniques more feasible for detonation forensics and understanding high-energy soot formation. While this analysis uses offline sample collection, SP-AMS could be deployed for in-situ measurements of detonation PM2.5 transported in the atmosphere.

Similar content being viewed by others

In situ Fe-doped thin carbon wires via AC high voltage arc discharge

Article Open access 27 November 2024

A comprehensive sub-type source profile of fine particle in China: chemical composition, markers, diagnostic ratios and implication for atmospheric chemistry

Article Open access 01 July 2025

Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste

Article Open access 30 August 2024

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The SQUIRREL and PIKA toolkits are available at https://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html71.

References

  1. Aiken, A. C. et al. High temperature and pressure regime soot: Physical, optical and chemical signatures from high explosive detonations. Aerosol Sci. Technol. 56, 931–946 (2022).

    Google Scholar 

  2. Huber, R. C. et al. Extreme condition nanocarbon formation under air and argon atmospheres during detonation of composition B-3. Carbon 126, 289–298 (2018).

    Google Scholar 

  3. Bagge-Hansen, M. et al. Detonation synthesis of carbon nano-onions via liquid carbon condensation. Nat. Commun. 10, 3819 (2019).

    Google Scholar 

  4. Bagge-Hansen, M. et al. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene. J. Appl. Phys. 117, https://doi.org/10.1063/1.4922866 (2015).

  5. Greiner, N. R., Phillips, D. S., Johnson, J. D. & Volkt, F. Diamonds in detonation soot. Nature 333, 440–442 (1988).

    Google Scholar 

  6. Satonkina, N. P., Ershov, A. P., Kashkarov, A. O. & Rubtsov, I. A. Elongated conductive structures in detonation soot of high explosives. RSC Adv. 10, 17620–17626 (2020).

    Google Scholar 

  7. Hammons, J. A. et al. Submicrosecond Aggregation during Detonation Synthesis of Nanodiamond. J. Phys. Chem. Lett. 12, 5286–5293 (2021).

    Google Scholar 

  8. Watkins, E. B. et al. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502. J. Phys. Chem. C. 121, 23129–23140 (2017).

    Google Scholar 

  9. Christenson, J. G. et al. The role of detonation condensates on the performance of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) detonation. J. Appl. Phys. 132, https://doi.org/10.1063/5.0091799 (2022).

  10. Podlesak, D. W. et al. in AIP Conference Proceedings (2017).

  11. Bond, T. C. et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos. 118, 5380–5552 (2013).

    Google Scholar 

  12. Andreae, M. O. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. Phys. 19, 8523–8546 (2019).

    Google Scholar 

  13. Simoneit, B. R. T. Biomass burning — a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17, https://doi.org/10.1016/S0883-2927(01)00061-0 (2002).

  14. Schauer, J. J., Kleeman, M. J., Cass, G. R. & Simoneit, B. R. T. Measurement of emissions from air pollution sources. 5. C1−C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 36, 1169–1180 (2002).

    Google Scholar 

  15. Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R. & Michelsen, H. A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361, 997–1000 (2018). 10.1126/science.aat3417.

    Google Scholar 

  16. Michelsen, H. A. Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36, 717–735 (2017).

    Google Scholar 

  17. Inal, F. & Senkan, S. M. Effects of oxygenate additives on polycyclic aromatic hydrocarbons (PAHs) and soot formation. Combust. Sci. Technol. 174, 1–19 (2002).

    Google Scholar 

  18. Frenklach, M. & Mebel, A. On the mechanism of soot nucleation. Phys. Chem. Chem. Phys. https://doi.org/10.1039/D0CP00116C (2020).

  19. Apicella, B., Russo, C., Carpentieri, A., Tregrossi, A. & Ciajolo, A. PAHs and fullerenes as structural and compositional motifs tracing and distinguishing organic carbon from soot. Fuel 309, https://doi.org/10.1016/j.fuel.2021.122356 (2022).

  20. Ree, F. H. Supercritical fluid phase separations: Implications for detonation properties of condensed explosives. J. Chem. Phys. 84, 5845–5856 (1986).

    Google Scholar 

  21. Bastea, S. & Fried, L. E. In 14th International Detonation Symposium.

  22. Hammons, J. A. et al. Resolving Detonation Nanodiamond Size Evolution and Morphology at Sub-Microsecond Timescales during High-Explosive Detonations. J. Phys. Chem. C. 123, 19153–19164 (2019).

    Google Scholar 

  23. Dubois, V. & Pineau, N. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons. J. Appl. Phys. 119, https://doi.org/10.1063/1.4938528 (2016).

  24. Pantea, D., Brochu, S., Thiboutot, S., Ampleman, G. & Scholz, G. A morphological investigation of soot produced by the detonation of munitions. Chemosphere 65, 821–831 (2006).

    Google Scholar 

  25. Chen, P., Huang, F. & Yun, S. Characterization of the condensed carbon in detonation soot. Carbon 41, 2093–2099 (2003).

    Google Scholar 

  26. Tao, X., Kang, X. & Jiazheng, Z. TEM and HREM studies on ultradispersed diamonds containing soot formed by explosive detonation. Mater. Sci. Eng.: B 38, https://doi.org/10.1016/0921-5107(95)01526-4 (1996).

  27. Krüger, A. et al. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43, 1722–1730 (2005).

    Google Scholar 

  28. Mykhaylyk, O., Solonin, Y., Batchelder, D. & Brydson, R. Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J. Appl. Phys. 97 https://doi.org/10.1063/1.1868054 (2005).

  29. Viecelli, J. A. & Ree, F. H. Carbon particle phase transformation kinetics in detonation waves. J. Appl. Phys. 88, 683–690 (2000).

    Google Scholar 

  30. Greiner, N. R., Rogers, Y. C. & Spall, W. D. Chemistry of detonation soot II: More diamonds and volatiles. (Los Alamos National Lab., NM (USA), 1990).

  31. Kitamura, T., Ito, T. & Fujimoto, H. Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ratio and temperature on soot particle formation. Int. J. Engine Res. 3, https://doi.org/10.1243/146808702762230923 (2002).

  32. Tramošljika, B., Blecich, P., Bonefačić, I. & Glažar, V. Advanced Ultra-Supercritical Coal-Fired Power Plant with Post-Combustion Carbon Capture: Analysis of Electricity Penalty and CO2 Emission Reduction. Sustainability 13, https://doi.org/10.3390/su13020801 (2021).

  33. Onasch, T. B. et al. Investigations of SP-AMS carbon ion distributions as a function of refractory black carbon particle type. Aerosol Sci. Technol. 49, 409–422 (2015).

    Google Scholar 

  34. Wang, J. et al. Observation of Fullerene Soot in Eastern China. Environ. Sci. Technol. Lett. 3, 121–126 (2016).

    Google Scholar 

  35. Tiwari, A. J., Ashraf-Khorassani, M. & Marr, L. C. C60 fullerenes from combustion of common fuels. Sci. Total Environ. 547, 254–260 (2016).

    Google Scholar 

  36. Utsunomiya, S., Jensen, K., Keeler, G. & Ewing, R. Uraninite and Fullerene inAtmospheric Particulates. Environ. Sci. Technol. 36, https://doi.org/10.1021/es025872a (2002).

  37. Sanchis, J. et al. Occurrence of aerosol-bound fullerenes in the Mediterranean Sea atmosphere. Environ. Sci. Technol. 46, 1335–1343 (2012).

    Google Scholar 

  38. Jahn, L. G. et al. Metallic and crustal elements in biomass-burning aerosol and ash: prevalence, significance, and similarity to soil particles. ACS Earth Space Chem. 5, 136–148 (2020).

    Google Scholar 

  39. Nilsson, P. T. et al. In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry. Nano Res. 8, 3780–3795 (2015).

    Google Scholar 

  40. Michelsen, H. A. et al. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano 14, 12470–12490 (2020).

    Google Scholar 

  41. Fortner, E. et al. Examining the chemical composition of black carbon particles from biomass burning with SP-AMS. J. Aerosol Sci. 120, 12–21 (2018).

    Google Scholar 

  42. Kuznetsov, V. L., Chuvilin, A. L., Butenko, Y. V., Mal’kov, I. Y. & Titov, V. M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 222, 343–348 (1994).

    Google Scholar 

  43. Canagaratna, M. R. et al. Chase studies of particulate emissions from in-use New York City Vehicles. Aerosol Sci. Technol. 38, 555–573 (2004).

    Google Scholar 

  44. Tobias, H. et al. Chemical analysis of diesel engine nanoparticles using a Nano-DMA/Thermal Desorption Particle BeamMass Spectrometer. Environ. Sci. Technol. 35, 2233–2243 (2001).

    Google Scholar 

  45. Dzepina, K. et al. Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. Int. J. Mass Spectrom. 263, 152–170 (2007).

    Google Scholar 

  46. Aiken, A. C., DeCarlo, P. F. & Jimenez, J. L. Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry. Anal. Chem. 79, 8350–8358 (2007).

    Google Scholar 

  47. Kim, K. H., Jahan, S. A., Kabir, E. & Brown, R. J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int 60, 71–80 (2013).

    Google Scholar 

  48. Eriksson, A. C. et al. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry. Environ. Sci. Technol. 48, 7143–7150 (2014).

    Google Scholar 

  49. Canagaratna, M. R. et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26, 185–222 (2007).

    Google Scholar 

  50. Allan, J. D. et al. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 35, 909–922 (2004).

    Google Scholar 

  51. Falk, J. et al. Immersion Freezing Ability of Freshly Emitted Soot with Various Physico-Chemical Characteristics. Atmosphere 12, https://doi.org/10.3390/atmos12091173 (2021).

  52. Ma, M. et al. Effects of polyoxymethylene dimethyl ether (PODEn) blended fuel on diesel engine emission: Insight from soot-particle aerosol mass spectrometry and aethalometer measurements. Atmos. Environ.: X 18, https://doi.org/10.1016/j.aeaoa.2023.100216 (2023).

  53. Carbone, S. et al. Distinguishing fuel and lubricating oil combustion products in diesel engine exhaust particles. Aerosol Sci. Technol. 53, 594–607 (2019).

    Google Scholar 

  54. Farley, R. N. et al. Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign. Atmos. Chem. Phys. 24, 3953–3971 (2024).

    Google Scholar 

  55. Hu, W. et al. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. J. Geophys. Res.: Atmos. 121, 1955–1977 (2016).

    Google Scholar 

  56. Hayes, P. L. et al. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. J. Geophys. Res.: Atmos. 118, 9233–9257 (2013).

    Google Scholar 

  57. Struckmeier, C., Drewnick, F., Fachinger, F., Gobbi, G. P. & Borrmann, S. Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons. Atmos. Chem. Phys. 16, 15277–15299 (2016).

    Google Scholar 

  58. Wang, H. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33, 41–67 (2011).

    Google Scholar 

  59. Apicella, B. et al. HRTEM and EELS investigations of flame-formed soot nanostructure. Fuel 225, 218–224 (2018).

    Google Scholar 

  60. Zhang, Q. et al. Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry. Environ. Sci. Technol. 39, 4938–4952 (2005).

    Google Scholar 

  61. Lee, A. K. Y. et al. Influences of primary emission and secondary coating formation on the particle diversity and mixing state of black carbon particles. Environ. Sci. Technol. 53, 9429–9438 (2019).

    Google Scholar 

  62. Naseri, A., Corbin, J. C. & Olfert, J. S. Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements. Atmos. Meas. Tech. 17, 3719–3738 (2024).

    Google Scholar 

  63. Cappa, C. D. et al. Light absorption by ambient black and brown carbon and its dependence on black carbon coating State for Two California, USA, cities in winter and summer. J. Geophys. Res.: Atmos. 124, 1550–1577 (2019).

    Google Scholar 

  64. China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C. & Dubey, M. K. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat. Commun. 4, 2122 (2013).

    Google Scholar 

  65. Wang, Y. et al. Fractal dimensions and mixing structures of soot particles during atmospheric processing. Environ. Sci. Technol. Lett. 4, 487–493 (2017).

    Google Scholar 

  66. Carbone, S. et al. Characterization of trace metals on soot aerosol particles with the SP-AMS: detection and quantification. Atmos. Meas. Tech. 8, 4803–4815 (2015).

    Google Scholar 

  67. Corbin, J. C. et al. Trace metals in soot and PM(2.5) from heavy-fuel-oil combustion in a marine engine. Environ. Sci. Technol. 52, 6714–6722 (2018).

    Google Scholar 

  68. Dallmann, T. R. et al. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmos. Chem. Phys. 14, 7585–7599 (2014).

    Google Scholar 

  69. Bibi, Z. et al. Technical note: A new approach to discriminate different black carbon sources by utilising fullerene and metals in positive matrix factorisation analysis of high-resolution soot particle aerosol mass spectrometer data. Atmos. Chem. Phys. 21, 10763–10777 (2021).

    Google Scholar 

  70. Avery, A. M., Williams, L. R., Fortner, E. C., Robinson, W. A. & Onasch, T. B. Particle detection using the dual-vaporizer configuration of the soot particle Aerosol Mass Spectrometer (SP-AMS). Aerosol Sci. Technol. 55, 254–267 (2020).

    Google Scholar 

  71. Sueper, D. TOF-AMS software downloads, https://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html#Analysis3 (2025).

  72. Jimenez, J. L. et al. Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res.: Atmos. 108, https://doi.org/10.1029/2001jd001213 (2003).

  73. Drewnick, F., Hings, S. S., Curtius, J., Eerdekens, G. & Williams, J. Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmos. Environ. 40, 4316–4327 (2006).

    Google Scholar 

  74. Willis, M. D. et al. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmos. Meas. Tech. 7, 4507–4516 (2014).

    Google Scholar 

  75. DeCarlo, P. F. et al. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 78, 8281–8289 (2006).

    Google Scholar 

  76. Lee, A. K. Y., Willis, M. D., Healy, R. M., Onasch, T. B. & Abbatt, J. P. D. Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS). Atmos. Chem. Phys. 15, 1823–1841 (2015).

    Google Scholar 

  77. Lee, A. K. Y. et al. Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium. Atmos. Chem. Phys. 16, 5561–5572 (2016).

    Google Scholar 

  78. Davies, D. L. & Bouldin, D. W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.1979.4766909 (1979).

Download references

Acknowledgements

The authors thank Kirill Velizhanin and Bryce Tappan for discussions and advice on detonation soot production and analysis. We thank David Podlesak, Ron Armato, Pat Bowden, John Gibson, Ritchie Chicas, Eric Anderson, and the LANL M-Division detonation team for shot assembly and detonation support. We thank Donna Sueper for SP-AMS data processing software support. Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number (LANL No. 20230257ER, PI Aiken). Los Alamos National Laboratory is operated by Triad National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract No. 89233218CNA000001.

Author information

Authors and Affiliations

  1. Los Alamos National Laboratory, Los Alamos, NM, USA

    Ryan N. Farley, James E. Lee, Rachel C. Huber, Madeline A. Stricklin, Kimberly N. Wurth & Allison C. Aiken

Authors
  1. Ryan N. Farley
    View author publications

    Search author on:PubMed Google Scholar

  2. James E. Lee
    View author publications

    Search author on:PubMed Google Scholar

  3. Rachel C. Huber
    View author publications

    Search author on:PubMed Google Scholar

  4. Madeline A. Stricklin
    View author publications

    Search author on:PubMed Google Scholar

  5. Kimberly N. Wurth
    View author publications

    Search author on:PubMed Google Scholar

  6. Allison C. Aiken
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.C.A., R.C.H., and M.A.S. conceived and directed the project. A.C.A., R.C.H., M.A.S., and J.E.L. designed the detonation experiments and sampling procedures. J.E.L., R.C.H., and A.C.A. collected samples. R.N.F. designed the aerosol data analysis procedure, performed SP-AMS measurements, and performed data analysis. K.N.W. performed SEM-EDS measurements and data processing. R.N.F. prepared the manuscript with input from all co-authors. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ryan N. Farley or Allison C. Aiken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks Joel Corbin and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farley, R.N., Lee, J.E., Huber, R.C. et al. Single-particle chemical analysis reveals organic-rich detonation soot products. Commun Chem (2026). https://doi.org/10.1038/s42004-025-01879-3

Download citation

  • Received: 12 August 2025

  • Accepted: 23 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s42004-025-01879-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing