Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
DyeDactic workflow to predict halochromism of biosynthetic colourants
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

DyeDactic workflow to predict halochromism of biosynthetic colourants

  • Dmitry S. Karlov1,2,
  • Rodolfo Marques2,
  • Richard J. Wheatley1 &
  • …
  • Jonathan D. Hirst  ORCID: orcid.org/0000-0002-2726-09831 

Communications Chemistry , Article number:  (2026) Cite this article

  • 1016 Accesses

  • 3 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bioanalytical chemistry
  • Cheminformatics
  • Computational chemistry
  • Natural products

Abstract

Textile dyeing using microorganisms is a step towards sustainable manufacturing. Computational design offers the prospect of new biosynthetic colourants with better dyeing performance, greater photostability, reduced toxicity, and desired colour. We present a workflow (DyeDactic) to predict halochromism, i.e. colour at different pH values. We filter compound libraries using a graph neural network model to estimate the relevant electronic transition energies of potential colourants. The absorption spectra in the visible region and the colours of the resultant molecules are calculated using time-dependent density functional theory. The populations of protonated and deprotonated species are estimated at different pH values. A weighted sum of their computed absorption spectra gives the predicted colour. The DyeDactic workflow is applied to four natural colourants: emodin, quinalizarin, biliverdin, and orcein, followed by experimental validation. As an illustration we also investigated the molecular mechanism of a red to blue colour change when microbial culture containing polyketide bikaverin is autoclaved. The workflow represents a useful tool to guide chemoenzymatic modifications to achieve industrial applicability.

Similar content being viewed by others

Bio decolorization of the oil soluble azo dye toluidine Red by Halomonas strain A3

Article Open access 26 September 2025

Tetra-color superresolution microscopy based on excitation spectral demixing

Article Open access 02 January 2023

Introducing machine learning model to response surface methodology for biosorption of methylene blue dye using Triticum aestivum biomass

Article Open access 26 May 2023

Data availability

The results from TD-DFT calculations and the trained chemprop models are available at https://github.com/colorifix/DyeDactic.

Code availability

All code to reproduce the workflow (except the colour index related analysis) is available at https://github.com/colorifix/DyeDactic; https://doi.org/10.5281/zenodo.17955211.

References

  1. Bechtold, T. & Mussak, R. Handbook of Natural Colorants (John Wiley & Sons, 2009).

  2. Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003).

    Google Scholar 

  3. Huang, H. et al. Targeted photoredox catalysis in cancer cells. Nat. Chem. 11, 1041–1048 (2019).

    Google Scholar 

  4. Woźniak, M. & Nowak-Perlak, M. Hypericin-based photodynamic therapy displays higher selectivity and phototoxicity towards melanoma and squamous cell cancer compared to normal keratinocytes in vitro. Int. J. Mol. Sci. 24, 16897 (2023).

    Google Scholar 

  5. Islam, M. R. & Mostafa, M. G. Textile dyeing effluents and environment concerns-a review. J. Environ. Sci. Nat. Resour. 11, 131–144 (2018).

    Google Scholar 

  6. Mouro, C., Gomes, A. P., Costa, R. V., Moghtader, F. & Gouveia, I. C. The sustainable bioactive dyeing of textiles: a novel strategy using bacterial pigments, natural antibacterial ingredients, and deep eutectic solvents. Gels 9, 800 (2023).

    Google Scholar 

  7. Li, D. P. et al. Stabilization of natural dyes by high levels of antioxidants. Adv. Mater. Res. 441, 192–199 (2012).

    Google Scholar 

  8. Roberts, M. A. J., Cranenburgh, R. M., Stevens, M. P. & Oyston, P. C. F. Synthetic biology: biology by design. Microbiology 159, 1219–1220 (2013).

    Google Scholar 

  9. Piñero, J., Furlong, L. I. & Sanz, F. In silico models in drug development: where we are. Curr. Opin. Pharmacol. 42, 111–121 (2018).

    Google Scholar 

  10. Yang, S., Chen, R., Cao, X., Wang, G. & Zhou, Y. J. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat. Commun. 15, 253 (2024).

    Google Scholar 

  11. Olsson, K. et al. Microbial production of next-generation stevia sweeteners. Microb. Cell Factories 15, 207 (2016).

    Google Scholar 

  12. Xu, F., Gage, D. & Zhan, J. Efficient production of indigoidine in Escherichia coli. J. Ind. Microbiol. Biotechnol. 42, 1149–1155 (2015).

    Google Scholar 

  13. Esclapez, J. et al. Optimization of phycocyanobilin synthesis in E. coli BL21: biotechnological insights and challenges for scalable production. Genes 15, 1058 (2024).

    Google Scholar 

  14. Manta-Costa, A., Araújo, S. O., Peres, R. S. & Barata, J. Machine learning applications in manufacturing—challenges, trends, and future directions. IEEE Open J. Ind. Electron. Soc. 5, 1085–1103 (2024).

    Google Scholar 

  15. Marques, M. A. L. & Gross, E. K. U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55, 427–455 (2004).

    Google Scholar 

  16. Santos, M. C. dos & Bicas, J. L. Natural blue pigments and bikaverin. Microbiol. Res. 244, 126653 (2021).

    Google Scholar 

  17. Shestak, O. P., Novikov, V. L. & Glazunov, V. P. Direct amination of naphthopurpurin and mompain, sea urchin pigments, and their O-methyl ethers by the reaction with ammonia. Russ. Chem. Bull. 70, 792–804 (2021).

    Google Scholar 

  18. Maaten, L. vander & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  19. Newsome, A. G., Culver, C. A. & van Breemen, R. B. Nature’s palette: the search for natural blue colorants. J. Agric. Food Chem. 62, 6498–6511 (2014).

    Google Scholar 

  20. Arteca, G. A. Molecular shape descriptors. in Reviews in Computational Chemistry 191–253 (John Wiley & Sons, Ltd, 1996).

  21. Porter, J. J. Dyeing equilibria: interaction of direct dyes with cellulose substrates. Color. Technol. 118, 238–243 (2002).

    Google Scholar 

  22. Beeson, K. H. Jr. Indigo production in the eighteenth century. Hisp. Am. Hist. Rev. 44, 214–218 (1964).

    Google Scholar 

  23. Russell, F., Harmody, D., McCarthy, P. J., Pomponi, S. A. & Wright, A. E. Indolo[3,2-a]carbazoles from a deep-water sponge of the genus asteropus. J. Nat. Prod. 76, 1989–1992 (2013).

    Google Scholar 

  24. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Google Scholar 

  25. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. in Proc. 34th International Conference on Machine Learning 70, 1263–1272 (JMLR.org, 2017).

  26. Heid, E. et al. Chemprop: a machine learning package for chemical property prediction. J. Chem. Inf. Model. 64, 9–17 (2024).

    Google Scholar 

  27. Greenman, K. P., Green, W. H. & Gómez-Bombarelli, R. Multi-fidelity prediction of molecular optical peaks with deep learning. Chem. Sci. 13, 1152–1162 (2022).

    Google Scholar 

  28. Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    Google Scholar 

  29. Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 314, 291–299 (1999).

    Google Scholar 

  30. Garcia-Ratés, M. & Neese, F. Efficient implementation of the analytical second derivatives of hartree–fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem. 40, 1816–1828 (2019).

    Google Scholar 

  31. Mester, D. & Kállay, M. Charge-transfer excitations within density functional theory: how accurate are the most recommended approaches? J. Chem. Theory Comput. 18, 1646–1662 (2022).

    Google Scholar 

  32. Lin, Y.-S., Li, G.-D., Mao, S.-P. & Chai, J.-D. Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 9, 263–272 (2013).

    Google Scholar 

  33. Briggs, L. H. et al. Chemistry of fungi. XI. Corticins A, B, and C, benzobisbenzofurans from Corticium caeruleum. Aust. J. Chem. 29, 179–190 (1976).

    Google Scholar 

  34. Joung, J. F. et al. Deep learning optical spectroscopy based on experimental database: potential applications to molecular design. JACS Au 1, 427–438 (2021).

    Google Scholar 

  35. Ksenofontov, A. A., Lukanov, M. M. & Bocharov, P. S. Can machine learning methods accurately predict the molar absorption coefficient of different classes of dyes? Spectrochim. Acta. A Mol. Biomol. Spectrosc. 279, 121442 (2022).

    Google Scholar 

  36. McDonald, M. A., Koscher, B. A., Canty, R. B. & Jensen, K. F. Calibration-free reaction yield quantification by HPLC with a machine-learning model of extinction coefficients. Chem. Sci. 15, 10092–10100 (2024).

    Google Scholar 

  37. Fayet, G. et al. Excited-state properties from ground-state DFT descriptors: a QSPR approach for dyes. J. Mol. Graph. Model. 28, 465–471 (2010).

    Google Scholar 

  38. Priyadarshi, R., Ezati, P. & Rhim, J.-W. Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Sci. Technol. 1, 124–138 (2021).

    Google Scholar 

  39. Musso, H. ORCEIN–UND LACKMUSFARBSTOFFE1. Planta Med. 8, 432–446 (2009).

    Google Scholar 

  40. Longhi, G. et al. Insights into the structures of bilirubin and biliverdin from vibrational and electronic circular dichroism: history and perspectives. Molecules 28, 2564 (2023).

    Google Scholar 

  41. Lightner, D. A., Holmes, D. L. & McDonagh, A. F. On the acid dissociation constants of bilirubin and biliverdin: pKa VALUES FROM 13C NMR SPECTROSCOPY (*). J. Biol. Chem. 271, 2397–2405 (1996).

    Google Scholar 

  42. Eckardt, K. et al. Anthracyclinone-blue A and B, new natural anthracyclinones containing nitrogen in the molecules: isolation, chemical structures and biosynthesis. J. Basic Microbiol. 31, 371–376 (1991).

    Google Scholar 

  43. Zhang, Q. et al. Discovery of hybrid chemical synthesis pathways with DORAnet. Digit. Discov. 4, 3109–3125 (2025).

  44. Ren, Y. et al. Dyeing and antibacterial properties of cotton dyed with prodigiosins nanomicelles produced by microbial fermentation. Dyes Pigments 138, 147–153 (2017).

    Google Scholar 

  45. Landrain, T., Adenis, M.-S., Blache, J. & Boissonnat, G. Use of actinorhodin and the derivatives thereof as a colouring agent. WO2018138089 (2018).

  46. Colour index https://colour-index.com/.

  47. Colorifix/DyeDactic https://github.com/Colorifix/DyeDactic (2025).

  48. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Google Scholar 

  49. Rajan, K., Brinkhaus, H. O., Agea, M. I., Zielesny, A. & Steinbeck, C. DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications. Nat. Commun. 14, 5045 (2023).

    Google Scholar 

  50. Bienfait, B. & Ertl, P. JSME: a free molecule editor in JavaScript. J. Cheminform. 5, 24 (2013).

    Google Scholar 

  51. Greenman, K. P., Green, W. H. & Gomez-Bombarelli, R. Code for UVVis predictions benchmarking. Preprint at https://doi.org/10.5281/zenodo.5500428 (2021).

  52. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: a Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015).

    Google Scholar 

  53. Wang, S., Witek, J., Landrum, G. A. & Riniker, S. Improving conformer generation for small rings and macrocycles based on distance geometry and experimental torsional-angle preferences. J. Chem. Inf. Model. 60, 2044–2058 (2020).

    Google Scholar 

  54. Landrum, G. et al. rdkit/rdkit: 2024_03_6 (Q1 2024) release. Preprint at https://doi.org/10.5281/zenodo.13469390 (2024).

  55. Halgren, T. A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20, 720–729 (1999).

    Google Scholar 

  56. Ehlert, S., Stahn, M., Spicher, S. & Grimme, S. Robust and efficient implicit solvation model for fast semiempirical methods. J. Chem. Theory Comput. 17, 4250–4261 (2021).

    Google Scholar 

  57. Neese, F. Software update: The ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  58. Grimme, S., Brandenburg, J. G., Bannwarth, C. & Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 143, 054107 (2015).

    Google Scholar 

  59. Cossi, M., Barone, V., Mennucci, B. & Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem. Phys. Lett. 286, 253–260 (1998).

    Google Scholar 

  60. Helmich-Paris, B., de Souza, B., Neese, F. & Izsák, R. An improved chain of spheres for exchange algorithm. J. Chem. Phys. 155, 104109 (2021).

    Google Scholar 

  61. Van Dijk, J., Casanova-Páez, M. & Goerigk, L. Assessing recent time-dependent double-hybrid density functionals on doublet–doublet excitations. ACS Phys. Chem. Au 2, 407–416 (2022).

    Google Scholar 

  62. Liang, J., Feng, X., Hait, D. & Head-Gordon, M. Revisiting the performance of time-dependent density functional theory for electronic excitations: assessment of 43 popular and recently developed functionals from rungs one to four. J. Chem. Theory Comput. 18, 3460–3473 (2022).

    Google Scholar 

  63. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Google Scholar 

  64. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Google Scholar 

  65. Boese, A. D. & Martin, J. M. L. Development of density functionals for thermochemical kinetics. J. Chem. Phys. 121, 3405–3416 (2004).

    Google Scholar 

  66. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Google Scholar 

  67. Grimme, S. & Neese, F. Double-hybrid density functional theory for excited electronic states of molecules. J. Chem. Phys. 127, 154116 (2007).

    Google Scholar 

  68. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Google Scholar 

  69. Zheng, J., Xu, X. & Truhlar, D. G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128, 295–305 (2011).

    Google Scholar 

  70. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).

    Google Scholar 

  71. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    Google Scholar 

  72. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Google Scholar 

  73. Jakalian, A., Bush, B. L., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000).

    Google Scholar 

  74. Li, P., Song, L. F. & Merz, K. M. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J. Phys. Chem. B 119, 883–895 (2015).

    Google Scholar 

  75. Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).

    Google Scholar 

  76. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Google Scholar 

  77. Castañeda-Ovando, A. et al. Chemical studies of anthocyanins: a review. Food Chem. 113, 859–871 (2009).

    Google Scholar 

  78. Pietrzak, M., Maciejczyk, M., Szabelski, M., Kasparek, A. & Wieczorek, Z. Self-association of hypericin analyzed by light absorption and fluorescence spectroscopy and molecular dynamics simulations. Chem. Phys. Lett. 601, 39–44 (2014).

    Google Scholar 

  79. Calculators Playground https://playground.calculators.cxn.io/.

  80. Csizmadia, F., Tsantili-Kakoulidou, A., Panderi, I. & Darvas, F. Prediction of distribution coefficient from structure. 1. Estimation method. J. Pharm. Sci. 86, 865–871 (1997).

    Google Scholar 

  81. Loco, D. & Cupellini, L. Modeling the absorption lineshape of embedded systems from molecular dynamics: a tutorial review. Int. J. Quantum Chem. 119, e25726 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Innovate UK under the Knowledge Transfer Partnership (KTP) programme for KTP Associate funding (KTP13278). J.D.H. is supported by the Department of Science, Innovation and Technology (DSIT) and the Royal Academy of Engineering under the Chairs in Emerging Technologies scheme. We are grateful for access to the University of Nottingham high performance computer (HPC). We thank Ed Whitley for advice and help with experimental measurements and Helen Deeks for the code review.

Author information

Authors and Affiliations

  1. School of Chemistry, University of Nottingham, Nottingham, UK

    Dmitry S. Karlov, Richard J. Wheatley & Jonathan D. Hirst

  2. Colorifix Ltd, Norwich, UK

    Dmitry S. Karlov & Rodolfo Marques

Authors
  1. Dmitry S. Karlov
    View author publications

    Search author on:PubMed Google Scholar

  2. Rodolfo Marques
    View author publications

    Search author on:PubMed Google Scholar

  3. Richard J. Wheatley
    View author publications

    Search author on:PubMed Google Scholar

  4. Jonathan D. Hirst
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.D.H. and R.J.W. conceived the idea of the project. D.S.K. carried out the calculations, wrote the computer code, performed the data analysis and experiments and prepared the manuscript draft. J.D.H., R.M. and R.J.W. supervised the research and edited the manuscript.

Corresponding author

Correspondence to Jonathan D. Hirst.

Ethics declarations

Competing interests

D.S.K. is a KTP associate working with Colorifix Ltd. R.M. is an employee of Colorifix Ltd. All other authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlov, D.S., Marques, R., Wheatley, R.J. et al. DyeDactic workflow to predict halochromism of biosynthetic colourants. Commun Chem (2026). https://doi.org/10.1038/s42004-025-01881-9

Download citation

  • Received: 17 June 2025

  • Accepted: 26 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s42004-025-01881-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing