Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
Lactam enables remote boronate rearrangements to C═N bonds
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 26 January 2026

Lactam enables remote boronate rearrangements to C═N bonds

  • Jie Lei  ORCID: orcid.org/0000-0001-5719-07981 na1,
  • Jia Xu1 na1,
  • Xue Li1,
  • Wei Yan  ORCID: orcid.org/0000-0003-1535-31002,
  • Zhongzhu Chen  ORCID: orcid.org/0000-0001-9555-67381,
  • Zhigang Xu  ORCID: orcid.org/0000-0003-0190-13131 &
  • …
  • Hong-yu Li  ORCID: orcid.org/0000-0001-9212-20102 

Communications Chemistry , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Diversity-oriented synthesis
  • Synthetic chemistry methodology

Abstract

Remote boronate rearrangement of boronic acids to C═N bonds is a valuable in synthetic chemistry. Conventional approaches are constrained by the need to pre-install specialized directing groups onto the starting materials. Here, we report a lactam-driven dynamic directing strategy, achieving 1,5- and 1,4-boronate rearrangements. The strategy circumvents the need for substrate pre-activation procedures, successfully overcoming a challenge in the functionalization of inactive C = N bonds to N-alkyl anilines and 3-aryl quinoxalinones. Comprehensive mechanistic investigations unveil three transformative insights: (i) Lactam leverages boron activation to C = N bonds through tetracoordinate boron species; (ii) the 1,5-boronate rearrangement to N-alkyl anilines is favored via an eight-membered boronate complex, as supported by density functional theory (DFT) studies; (iii) a catalyst-free 1,4-boronate rearrangement pathway operates through HFIP-stabilized tetracoordinate boron intermediates. This lactam-enabled boronate rearrangements offers a methodology with transformative potential.

Similar content being viewed by others

Overcoming limitations in Chan-Lam amination with alkylboronic esters via aminyl radical substitution

Article Open access 14 October 2025

A radical approach for the selective C–H borylation of azines

Article 20 May 2021

Organocatalysed three-component modular synthesis of BN isosteres and BN-2,1-azaboranaphthalenes via Wolff-type rearrangement

Article Open access 09 September 2025

Data availability

The data generated in this study are provided in the Supplementary Information file. For the experimental procedures, data of NMR and HRMS analysis and computational details, see the Supplementary Information file. The computational data for each intermediate are provided in Supplementary Data 1. The list of XYZ coordinates for each structure are supplied as. zip files in Supplementary Data 3–6. The X-ray crystallographic coordinates for structures reported in this study are provided in Supplementary Data 2 and 7 and have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2441557 and 2341146. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Sharma, H. A., Essman, J. Z. & Jacobsen, E. N. Enantioselective catalytic 1,2-boronate rearrangements. Science 374, 752–757 (2021).

    Google Scholar 

  2. Wang, H., Jing, C. C., Noble, A. & Aggarwal, V. K. Stereospecific 1,2-migrations of boronate complexes induced by electrophiles. Angew. Chem. Int. Ed. 59, 16859–16872 (2020).

    Google Scholar 

  3. Hall, D. G. Boronic acid catalysis. Chem. Soc. Rev. 48, 3475–3496 (2019).

    Google Scholar 

  4. Ma, X. et al. Modular assembly of versatile tetrasubstituted alkenyl monohalides from alkynyl tetracoordinate borons. Chem 9, 1164–1181 (2023).

    Google Scholar 

  5. Guo, Y. et al. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat. Commun. 14, 5693 (2023).

    Google Scholar 

  6. Ma, X., An, Y., Li, L., Cai, M. & Song, Q. Interception of alkynyl tetracoordinate borons with sulfur electrophiles beyond the Zweifel pathway. Angew. Chem. Int. Ed. 64, e202416579 (2024).

    Google Scholar 

  7. Wang, D. H., Mück-Lichtenfeld, C. & Studer, A. 1,n-Bisborylalkanes via radical boron migration. J. Am. Chem. Soc. 142, 9119–9123 (2020).

    Google Scholar 

  8. Ma, X. et al. Ni-catalysed assembly of axially chiral alkenes from alkynyl tetracoordinate borons via 1,3-metallate shift. Nat. Chem. 16, 42–53 (2024).

    Google Scholar 

  9. Yang, K. et al. Construction of C-B axial chirality via dynamic kinetic asymmetric cross-coupling mediated by tetracoordinate boron. Nat. Commun. 14, 4438 (2023).

    Google Scholar 

  10. Li, C. et al. Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat. Commun. 13, 1784 (2022).

    Google Scholar 

  11. Wei, H., Luo, Y., Ren, J., Yuan, Q. & Zhang, W. Ni(II)-catalyzed asymmetric alkenylation and arylation of aryl ketones with organoborons via 1,5-metalate shift. Nat. Commun. 15, 8775 (2024).

    Google Scholar 

  12. Li, X., Zhang, G. & Song, Q. Recent advances in the construction of tetracoordinate boron compounds. Chem. Commun. 59, 3812–3820 (2023).

    Google Scholar 

  13. Yang, K. & Song, Q. Tetracoordinate boron intermediates enable unconventional transformations. Acc. Chem. Res. 54, 2298–2312 (2021).

    Google Scholar 

  14. Li, C. et al. Remote boryl and alkenyl radical migration of olefin-bearing aryl bromides. CCS Chem. 7, 279–292 (2025).

    Google Scholar 

  15. Liang, J., Chen, X., Chen, J., Ma, X. & Song, Q. Highly stereoselective synthesis of multisubstituted olefins from alkynyl tetracoordinate borons and iodonium ylides via a cyclic intermediate. Org. Lett. 26, 3872–3877 (2024).

    Google Scholar 

  16. Lu, X. et al. Versatile synthesis of α-oxygen organoboron compounds via photo-induced siloxycarbene. Chin. J. Chem. 42, 2712–2716 (2024).

    Google Scholar 

  17. Zhu, F., Jia, Z., Zhang, F. & Wu. X. F. Palladium/copper-catalyzed 1,2-arylboration of styrenes with b2pin2 and indoles. Green Synth. Catal. in press (2025).

  18. Wu, P., Givskov, M. & Nielsen, T. E. Reactivity and synthetic applications of multicomponent Petasis reactions. Chem. Rev. 119, 11245–11290 (2019).

    Google Scholar 

  19. Li, Y., Li, T., Wu, H. & Yang, J. Progress in Petasis reaction. Chin. J. Org. Chem. 32, 1836–1845 (2012).

    Google Scholar 

  20. Petasis, N. A. & Akritopoulou, I. The boronic acid Mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett. 34, 583–586 (1993).

    Google Scholar 

  21. Smith, A. B. III, Fox, R. J. & Razler, T. M. Evolution of the Petasis-Ferrier union/rearrangement tactic: construction of architecturally complex natural products possessing the ubiquitous cis-2,6-substituted tetrahydropyran structural element. Acc. Chem. Res. 41, 675–687 (2008).

    Google Scholar 

  22. Candeias, N. R., Montalbano, F., Cal, P. M. S. D. & Gois, P. M. P. Boronic acids and esters in the Petasis-Borono Mannich multicomponent reaction. Chem. Rev. 110, 6169–6193 (2010).

    Google Scholar 

  23. Pellissier, H. Stereocontrolled domino reactions. Chem. Rev. 113, 442–524 (2013).

    Google Scholar 

  24. Pandit, N. T. & Kamble, S. B. The Petasis reaction: applications and organic synthesis-a comprehensive review. Top. Curr. Chem. 383, 7 (2025).

    Google Scholar 

  25. Krajcovicova, S. Ideas behind the tryptophan-mediated Petasis reaction (TMPR) concept for peptide stapling. ChemMedChem 19, e202400148 (2024).

    Google Scholar 

  26. Petasis, N. A. & Zavialov, I. A. A new and practical synthesis of α-amino acids from alkenyl boronic acids. J. Am. Chem. Soc. 119, 445–446 (1997).

    Google Scholar 

  27. Petasis, N. A. & Zavialov, I. A. Highly stereocontrolled one-step synthesis of anti-β-amino alcohols from organoboronic acids, amines, and α-hydroxy aldehydes. J. Am. Chem. Soc. 120, 11798–11799 (1998).

    Google Scholar 

  28. Batey, R. A., MacKay, D. B. & Santhakumar, V. Alkenyl and aryl boronates-Mild nucleophiles for the stereoselective formation of functionalized N-heterocycles. J. Am. Chem. Soc. 121, 5075–5076 (1999).

    Google Scholar 

  29. Wu, P. et al. Reductive cyclization and Petasis-like reaction for the synthesis of functionalized γ-lactams. Eur. J. Org. Chem. 2015, 2346–2350 (2015).

    Google Scholar 

  30. Wang, Q. & Finn, M. G. 2H-Chromenes from salicylaldehydes by a catalytic Petasis reaction. Org. Lett. 2, 4063–4065 (2000).

    Google Scholar 

  31. Petasis, N. A. & Boral, S. One-step three-component reaction among organoboronic acids, amines and salicylaldehydes. Tetrahedron Lett. 42, 539–542 (2001).

    Google Scholar 

  32. Kumagai, N., Muncipinto, G. & Schreiber, S. L. Short synthesis of skeletally and stereochemically diverse small molecules by coupling Petasis condensation reactions to cyclization reactions. Angew. Chem. Int. Ed. 45, 3635–3638 (2006).

    Google Scholar 

  33. Muncipinto, G., Moquist, P. N., Schreiber, S. L. & Schaus, S. E. Catalytic diastereoselective Petasis reactions. Angew. Chem. Int. Ed. 50, 8172–8175 (2011).

    Google Scholar 

  34. Ascic, E., Le Quement, S. T., Ishoey, M., Daugaard, M. & Nielsen, T. E. Build/couple/pair strategy combining the Petasis 3-component reaction with Ru-catalyzed ring-closing metathesis and isomerization. ACS Comb. Sci. 14, 253–257 (2012).

    Google Scholar 

  35. Mandai, H., Yamada, H., Shimowaki, K., Mitsudo, K. & Suga, S. Petasis Boronic-Mannich reaction of chiral lactol derivatives. Synthesis 46, 2672–2681 (2014).

    Google Scholar 

  36. Mundal, D. A., Lutz, K. E. & Thomson, R. J. A direct synthesis of allenes by a traceless Petasis reaction. J. Am. Chem. Soc. 134, 5782–5785 (2012).

    Google Scholar 

  37. Montalbano, F. et al. Four-component assembly of chiral N-B heterocycles with a natural product-like framework. Org. Lett. 14, 988–991 (2012).

    Google Scholar 

  38. Jiang, Y., Diagne, A. B., Thomson, R. J. & Schaus, S. E. Enantioselective synthesis of allenes by catalytic traceless Petasis reactions. J. Am. Chem. Soc. 139, 1998–2005 (2017).

    Google Scholar 

  39. Bering, L. & Antonchick, A. P. Regioselective metal-free cross-coupling of quinoline N-oxides with boronic acids. Org. Lett. 17, 3134–3137 (2015).

    Google Scholar 

  40. Yang, K., Zhang, F., Fang, T., Zhang, G. & Song, Q. Stereospecific 1,4-metallate shift enables stereoconvergent synthesis of ketoximes. Angew. Chem. Int. Ed. 58, 13421–13426 (2019).

    Google Scholar 

  41. Xu, H., Ye, M., Yang, K. & Song, Q. Regioselective cross-coupling of isatogens with boronic acids to construct 2,2-disubstituted indolin-3-one derivatives. Org. Lett. 23, 7776–7780 (2021).

    Google Scholar 

  42. Zou, P. et al. Photochemical 1,3-boronate rearrangement enables three-component N-alkylation for α-tertiary hydroxybenzylamine synthesis. Nat. Commun. 15, 10234 (2024).

    Google Scholar 

  43. Li, X. et al. (sp²)-C(sp³) cross-coupling of α-(pseudo)halo aliphatic ketones with boronic acids via a 1,4-metallate shift. Nat. Synth. 2, 1211–1221 (2023).

    Google Scholar 

  44. Hao, K. et al. Metal-free 1,3-boronate rearrangement to ketones driven by visible light. Angew. Chem. Int. Ed. 63, e202316481 (2023).

    Google Scholar 

  45. Yoshinaga, Y., Yamamoto, T. & Suginome, M. Stereoinvertive C–C bond formation at the boron-bound stereogenic centers through copper-bipyridine-catalyzed intramolecular coupling of α-aminobenzylboronic esters. Angew. Chem. Int. Ed. 59, 7251–7255 (2020).

    Google Scholar 

  46. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Google Scholar 

  47. Ohmura, T., Awano, T. & Suginome, M. Stereospecific Suzuki-Miyaura coupling of chiral α-(acylamino)benzylboronic esters with inversion of configuration. J. Am. Chem. Soc. 132, 13191–13193 (2010).

    Google Scholar 

  48. Sandrock, D. L., Jean-Gérard, L., Chen, C. Y., Dreher, S. D. & Molander, G. A. Stereospecific cross-coupling of secondary alkyl -trifluoroboratoamides. J. Am. Chem. Soc. 132, 17108–17110 (2010).

    Google Scholar 

  49. Awano, T., Ohmura, T. & Suginome, M. Inversion or retention? Effects of acidic additives on the stereochemical course in enantiospecific Suzuki-Miyaura coupling of α-(acetylamino)benzylboronic esters. J. Am. Chem. Soc. 133, 20738–20741 (2011).

    Google Scholar 

  50. Lee, J. C. H., McDonald, R. & Hall, D. G. Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat. Chem. 3, 894–899 (2011).

    Google Scholar 

  51. He, Z., Song, F., Sun, H. & Huang, Y. Transition-metal-free Suzuki-type cross-coupling reaction of benzyl halides and boronic acids via 1,2-metalate shift. J. Am. Chem. Soc. 140, 2693–2699 (2018).

    Google Scholar 

  52. Yang, K. et al. Passerini-type reaction of boronic acids enables α-hydroxy ketones synthesis. Nat. Commun. 12, 441–450 (2021).

    Google Scholar 

  53. Carrër, A., Brion, J.-D., Messaoudi, S. & Alami, M. Palladium(II)-catalyzed oxidative arylation of quinoxalin-2(1H)-ones with arylboronic acids. Org. Lett. 15, 5606–5609 (2013).

    Google Scholar 

  54. Ramesh, B., Reddy, C. R., Kumar, G. R. & Reddy, B. V. S. Mn(OAc)₃·2H₂O promoted addition of arylboronic acids to quinoxalin-2-ones. Tetrahedron Lett. 59, 628–631 (2018).

    Google Scholar 

  55. Yin, K. & Zhang, R. Transition-metal-free direct C–H arylation of quinoxalin-2(1H)-ones with diaryliodonium salts at room temperature. Org. Lett. 19, 1530–1533 (2017).

    Google Scholar 

  56. Paul, S., Ha, J. H., Park, G. E. & Lee, Y. R. Transition metal-free iodosobenzene-promoted direct oxidative 3-arylation of quinoxalin-2(H)-ones with arylhydrazines. Adv. Synth. Catal. 359, 1515–1521 (2017).

    Google Scholar 

  57. Yuan, J., Liu, S. & Qu, L. Transition metal-free direct C-3 arylation of quinoxalin-2(1H)-ones with arylamines under mild conditions. Adv. Synth. Catal. 359, 4197–4207 (2017).

    Google Scholar 

  58. Singh, N., Sharma, A., Singh, J., Pandey, A. P. & Sharma, A. Visible light-induced electron-donor-acceptor-mediated C-3 coupling of quinoxalin-2(1H)-ones with unactivated aryl iodides. Org. Lett. 26, 6471–6476 (2024).

    Google Scholar 

  59. Kwon, S. J., Jung, H. I. & Kim, D. Y. Visible light photoredox-catalyzed arylation of quinoxalin-2(1H)-ones with aryldiazonium salts. ChemistrySelect 3, 5824–5827 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors (J.L., X. L., Z.-G.X., Z.-Z.C.) would like to thank Chongqing talents Foundation Project (cstc2022ycjh-bgzxm0170, cstc2022ycjh-bgzxm0170-1 and cstc2024ycjh-bgzxm0134), the Natural Science Foundation Project of CQ CSTSC (CSTB2024NSCQ-LZX0049 and CSTB2024NSCQMSX0917), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202401347, KJQN202201302, KJZD-K202501310 and KJZD-M202401303), and Chongqing University of Arts and Sciences: Program for Talents Introduction (R2022YX07), the Natural Science Foundation Project of Yongchuan (2023yc-jckx20074 and 2025yc-cxfz10073).

Author information

Author notes
  1. These authors contributed equally: Jie Lei, Jia Xu.

Authors and Affiliations

  1. College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China

    Jie Lei, Jia Xu, Xue Li, Zhongzhu Chen & Zhigang Xu

  2. Department of Pharmacology, College of Medicine, University of Texas Health San Antonio, San Antonio, TX, US

    Wei Yan & Hong-yu Li

Authors
  1. Jie Lei
    View author publications

    Search author on:PubMed Google Scholar

  2. Jia Xu
    View author publications

    Search author on:PubMed Google Scholar

  3. Xue Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Wei Yan
    View author publications

    Search author on:PubMed Google Scholar

  5. Zhongzhu Chen
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhigang Xu
    View author publications

    Search author on:PubMed Google Scholar

  7. Hong-yu Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.L. conceived the project and designed experiments. J.X. performed experiments and prepared the supplemental information. W.Y. participated in the data collection. J.L., X.L., Z.-G.X., and H. L. prepared this manuscript. Z.-Z.C. and H.L. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhongzhu Chen, Zhigang Xu or Hong-yu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4.

Supplementary Data 5.

Supplementary Data 6

Supplementary Data 7

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Xu, J., Li, X. et al. Lactam enables remote boronate rearrangements to C═N bonds. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01890-2

Download citation

  • Received: 21 July 2025

  • Accepted: 06 January 2026

  • Published: 26 January 2026

  • DOI: https://doi.org/10.1038/s42004-026-01890-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing