Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Analysis of the confinement string in (2+1)-dimensional Quantum Electrodynamics with a trapped-ion quantum computer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Analysis of the confinement string in (2+1)-dimensional Quantum Electrodynamics with a trapped-ion quantum computer

  • Arianna Crippa  ORCID: orcid.org/0000-0003-2376-56821,2,
  • Karl Jansen  ORCID: orcid.org/0000-0002-1574-75911,3 &
  • Enrico Rinaldi  ORCID: orcid.org/0000-0003-4134-809X4,5,6,7 

Communications Physics , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Quantum simulation
  • Theoretical particle physics

Abstract

Understanding strongly interacting quantum field theories is a central challenge in theoretical physics, with direct relevance to nuclear, high-energy and condensed matter systems. Here we present a quantum algorithm for compact lattice Quantum Electrodynamics in 2+1 dimensions with dynamical fermionic matter. Using a variational quantum approach, we extract the static potential between charges across Coulomb, confinement, and string-breaking regimes. Our method employs a symmetry-preserving, resource-efficient circuit to prepare ground states, enabling accurate calculations on the Quantinuum H1-1 trapped-ion device and emulator, in agreement with noiseless simulations. Moreover, we visualize the electric field flux configurations that mainly contribute to the wave function of the quantum ground state, giving insights into the mechanisms of confinement and string-breaking. These results are a promising step forward in the grand challenge of solving higher dimensional lattice gauge theory problems with quantum computing algorithms.

Similar content being viewed by others

Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories

Article Open access 04 June 2025

Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks

Article Open access 14 June 2021

Observation of microscopic confinement dynamics by a tunable topological θ-angle

Article 20 December 2024

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

A python code implementation for the truncation scheme as well as quantum circuit construction is available at ref. 53.

References

  1. Wilson, K. G. Confinement of Quarks. Phys. Rev. D. 10, 2445–2459 (1974).

    Google Scholar 

  2. Rothe, H. J. Lattice Gauge Theories: An Introduction (World Scientific Publishing Company, 2012).

  3. Gattringer, C. & Lang, C. Quantum Chromodynamics on the Lattice: An Introductory Presentation, vol. 788 (Springer Science & Business Media, 2009).

  4. Gross, F. et al. 50 years of quantum chromodynamics. Eur. Phys. J. C. 83, 1125 (2023).

    Google Scholar 

  5. Polyakov, A. M. Quark confinement and topology of gauge groups. Nucl. Phys. B 120, 429–458 (1977).

    Google Scholar 

  6. Wen, X.-G. Quantum Field Theory of Many-body Systems. (Oxford University Press, New York, NY, 2004).

    Google Scholar 

  7. Knechtli, F. & Sommer, R. String breaking as a mixing phenomenon in the SU(2) Higgs model. Nucl. Phys. B 590, 309–328 (2000).

    Google Scholar 

  8. Philipsen, O. & Wittig, H. String breaking in nonAbelian gauge theories with fundamental matter fields. Phys. Rev. Lett. 81, 4056–4059 (1998).

    Google Scholar 

  9. Bali, G. S. QCD forces and heavy quark bound states. Phys. Rept. 343, 1–136 (2001).

  10. Loan, M., Brunner, M., Sloggett, C. & Hamer, C. Path integral Monte Carlo approach to the U (1) lattice gauge theory in 2+ 1 dimensions. Phys. Rev. D. 68, 034504 (2003).

    Google Scholar 

  11. Bender, J., Emonts, P., Zohar, E. & Cirac, J. I. Real-time dynamics in 2 + 1d compact QED using complex periodic gaussian states. Phys. Rev. Res. 2, 043145 (2020).

    Google Scholar 

  12. Banuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D. 74, 1–42 (2020).

    Google Scholar 

  13. Bauer, C. W. et al. Quantum simulation for high-energy physics. PRX Quantum 4, 027001 (2023).

    Google Scholar 

  14. Di Meglio, A. et al. Quantum computing for high-energy physics: state of the art and challenges. PRX Quantum 5, 037001 (2024).

    Google Scholar 

  15. Funcke, L., Hartung, T., Jansen, K. & Kühn, S. Review on quantum computing for lattice field theory. PoS LATTICE2022, 228 (2023).

    Google Scholar 

  16. Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).

    Google Scholar 

  17. Wiese, U.-J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. der Phys. 525, 777–796 (2013).

    Google Scholar 

  18. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2015).

    Google Scholar 

  19. Magnifico, G., Felser, T., Silvi, P. & Montangero, S. Lattice quantum electrodynamics in (3+ 1)-dimensions at finite density with tensor networks. Nat. Commun. 12, 3600 (2021).

    Google Scholar 

  20. Zohar, E. & Reznik, B. Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. Phys. Rev. Lett. 107, 275301 (2011).

    Google Scholar 

  21. Cochran, T. A. et al. Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories. Nature 642, 1–6 (2025).

  22. De, A. et al. Observation of string-breaking dynamics in a quantum simulator. Preprint at https://arxiv.org/abs/2410.13815 (2024).

  23. González-Cuadra, D. et al. Observation of string breaking on a (2+ 1) D Rydberg quantum simulator. Nature 642, 1–6 (2025).

  24. Quantinuum H1-1. https://www.quantinuum.com/products-solutions/system-model-h1-series (2024).

  25. Kogut, J. & Susskind, L. Hamiltonian formulation of wilson’s lattice gauge theories. Phys. Rev. D. 11, 395–408 (1975).

    Google Scholar 

  26. Robson, D. & Webber, D. Gauge theories on a small lattice. Z. Phys. C. Part. Fields 7, 53–60 (1980).

    Google Scholar 

  27. Ligterink, N., Walet, N. & Bishop, R. A many-body treatment of hamiltonian lattice gauge theory. Nucl. Phys. A Nucl. Hadronic Phys. 663, 983c–986c (2000).

    Google Scholar 

  28. Nielsen, H. B. & Ninomiya, M. No go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219–223 (1981).

    Google Scholar 

  29. Susskind, L. Lattice fermions. Phys. Rev. D. 16, 3031–3039 (1977).

    Google Scholar 

  30. Haase, J. F. et al. A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 5, 393 (2021).

    Google Scholar 

  31. Mathis, S. V., Mazzola, G. & Tavernelli, I. Toward scalable simulations of lattice gauge theories on quantum computers. Phys. Rev. D. 102, 094501 (2020).

    Google Scholar 

  32. Chandrasekharan, S. & Wiese, U.-J. Quantum link models: a discrete approach to gauge theories. Nucl. Phys. B 492, 455–471 (1997).

    Google Scholar 

  33. Hashizume, T., Halimeh, J., Hauke, P. & Banerjee, D. Ground-state phase diagram of quantum link electrodynamics in (2 + 1)-d. SciPost Phys. 13, https://doi.org/10.21468/SciPostPhys.13.2.017 (2022).

  34. Notarnicola, S. et al. Discrete abelian gauge theories for quantum simulations of qed. J. Phys. A Math. Theor. 48, 30FT01 (2015).

    Google Scholar 

  35. Meth, M. et al. Simulating 2d lattice gauge theories on a qudit quantum computer. Preprint at https://arxiv.org/abs/2310.12110 (2023).

  36. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Google Scholar 

  37. Nakanishi, K. M., Fujii, K. & Todo, S. Sequential minimal optimization for quantum-classical hybrid algorithms. Phys. Rev. Res. 2, 043158 (2020).

    Google Scholar 

  38. Ostaszewski, M., Grant, E. & Benedetti, M. Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021).

    Google Scholar 

  39. Kohda, M. et al. Quantum expectation-value estimation by computational basis sampling. Phys. Rev. Res. 4, 033173 (2022).

    Google Scholar 

  40. Tranter, A. et al. InQuanto: quantum computational chemistry. https://www.quantinuum.com/products-solutions/inquanto (2022).

  41. DeCross, M., Chertkov, E., Kohagen, M. & Foss-Feig, M. Qubit-reuse compilation with mid-circuit measurement and reset. Phys. Rev. X 13, 041057 (2023).

    Google Scholar 

  42. Sivarajah, S. et al. t\(\left\vert {{{\rm{ket}}}}\right\rangle\): a retargetable compiler for NISQ devices. Quantum Sci. Technol. 6, 014003 (2020).

    Google Scholar 

  43. Quantinuum H2-1. https://www.quantinuum.com/products-solutions/system-model-h2-series (2024).

  44. Crippa, A. et al. Towards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods. Commun. Phys. 8, 367 (2025).

  45. Farrell, R. C., Illa, M., Ciavarella, A. N. & Savage, M. J. Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on 100 Qubits. PRX Quantum 5, 020315 (2024).

    Google Scholar 

  46. Granet, E., Ghanem, K. & Dreyer, H. Practicality of a quantum adiabatic algorithm for chemistry applications. Phys. Rev. A. 111, 022428 (2025).

  47. Luescher, M. Symmetry-breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B 180, 317–329 (1981).

    Google Scholar 

  48. Lüscher, M. & Weisz, P. Quark confinement and the bosonic string. J. High. Energy Phys. 2002, 049 (2002).

    Google Scholar 

  49. Nogueira, F. S. & Kleinert, H. Quantum electrodynamics in 2+ 1 dimensions, confinement, and the stability of u (1) spin liquids. Phys. Rev. Lett. 95, 176406 (2005).

    Google Scholar 

  50. Chagdaa, S., Galsandorj, E., Laermann, E. & Purev, B. Width and string tension of the flux tube in su (2) lattice gauge theory at high temperature. J. Phys. G: Nucl. Part. Phys. 45, 025002 (2017).

    Google Scholar 

  51. Caselle, M., Cellini, E. & Nada, A. Numerical determination of the width and shape of the effective string using stochastic normalizing flows. J. High Energ. Phys. 2025, 1–30 (2025).

  52. Peng, C. et al. Hamiltonian lattice formulation of compact Maxwell-Chern-Simons theory. Preprint at https://arxiv.org/abs/2407.20225 (2024).

  53. Crippa, A. QED_Hamiltonian/v0.0.2, https://github.com/ariannacrippa/QC_lattice_H (2024).

  54. Paulson, D. et al. Simulating 2d effects in lattice gauge theories on a quantum computer. PRX Quantum 2, 030334 (2021).

    Google Scholar 

  55. Di Matteo, O. et al. Improving hamiltonian encodings with the gray code. Phys. Rev. A 103, 042405 (2021).

    Google Scholar 

  56. Jordan, P. & Wigner, E. P.Über das paulische äquivalenzverbot (Springer, 1993).

  57. Quantinuum nexus, https://nexus.quantinuum.com/ (2024).

  58. Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209 (2021).

    Google Scholar 

  59. Ryan-Anderson, C. Pecos: performance estimator of codes on surfaces. https://github.com/PECOS-packages/PECOS (2018).

  60. Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    Google Scholar 

  61. Yamamoto, K., Manrique, D. Z., Khan, I. T., Sawada, H. & Ramo, D. M. Quantum hardware calculations of periodic systems with partition-measurement symmetry verification: Simplified models of hydrogen chain and iron crystals. Phys. Rev. Res. 4, https://doi.org/10.1103/PhysRevResearch.4.033110 (2022).

  62. Jackson, C. & van Enk, S. J. Detecting correlated errors in state-preparation-and-measurement tomography. Phys. Rev. A 92, 042312 (2015).

    Google Scholar 

Download references

Acknowledgements

We acknowledge Henrik Dreyer and David Zsolt Manrique for a careful review of the manuscript, and Irfan Khan for discussions on the qubit reuse automatic compilation. We thank the entire Quantinuum NEXUS team. We thank Davide Materia for sharing his work on the employment of the mutual information in quantum chemistry. We are grateful to Enrique Rico Ortega, Francesco Di Marcantonio and Maria Cristina Diamantini for fruitful discussions on the topic. This work is supported with funds from the Ministry of Science, Research and Culture of the State of Brandenburg within the Centre for Quantum Technologies and Applications (CQTA). A.C. is supported in part by the Helmholtz Association Innopool Project Variational Quantum Computer Simulations (VQCS). This work is funded by the European Union’s Horizon Europe Frame-work Programme (HORIZON) under the ERA Chair scheme with grant agreement no. 101087126.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738, Zeuthen, Germany

    Arianna Crippa & Karl Jansen

  2. Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489, Berlin, Germany

    Arianna Crippa

  3. Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Kavafi Street, 2121, Nicosia, Cyprus

    Karl Jansen

  4. Quantinuum K.K., Financial City Grand Cube 3F, 1-9-2 Otemachi,Chiyoda-ku, Tokyo, Japan

    Enrico Rinaldi

  5. Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama, 351-0198, Japan

    Enrico Rinaldi

  6. Center for Quantum Computing (RQC), RIKEN, Wako, Saitama, 351-0198, Japan

    Enrico Rinaldi

  7. Theoretical Quantum Physics Laboratory, Cluster of Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan

    Enrico Rinaldi

Authors
  1. Arianna Crippa
    View author publications

    Search author on:PubMed Google Scholar

  2. Karl Jansen
    View author publications

    Search author on:PubMed Google Scholar

  3. Enrico Rinaldi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A. Crippa is the corresponding author of this manuscript. A. Crippa developed the quantum circuits and carried out the calculations in the Hamiltonian formalism with exact diagonalization, variational quantum computing approach and on quantum hardware. K. Jansen supervised the project and contributed to discussions of the results. E. Rinaldi applied the necessary transpilation and error mitigation techniques to run on the ion trap device and supervised the quantum hardware runs. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Arianna Crippa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Or Katz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crippa, A., Jansen, K. & Rinaldi, E. Analysis of the confinement string in (2+1)-dimensional Quantum Electrodynamics with a trapped-ion quantum computer. Commun Phys (2026). https://doi.org/10.1038/s42005-025-02465-8

Download citation

  • Received: 31 January 2025

  • Accepted: 12 December 2025

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s42005-025-02465-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing