Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Time-domain field correlation measurements enable tomography of highly multimode quantum states of light
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 January 2026

Time-domain field correlation measurements enable tomography of highly multimode quantum states of light

  • Emanuel Hubenschmid  ORCID: orcid.org/0000-0002-2926-25951 &
  • Guido Burkard  ORCID: orcid.org/0000-0001-9053-22001 

Communications Physics , Article number:  (2026) Cite this article

  • 1428 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nonlinear optics
  • Quantum information
  • Quantum optics
  • Terahertz optics
  • Ultrafast photonics

Abstract

Recent progress in ultrafast optics facilitates the investigation of the dynamics of highly multimode quantum states of light. Yet, the complete tomographic reconstruction of optical quantum states with prior unknown statistics and dynamics is still challenging, since state-of-the-art tomographic methods require the measurement of orthogonal and distinguishable modes. Here, we propose a tomography scheme based on time-domain quadrature correlation measurements and theoretically demonstrate its ability to reconstruct highly multimode Gaussian states. In contrast to (eight-port) homodyne detection, the two local oscillator pulses are shorter in time and are (independently) time-delayed against the pulsed quantum state. The distinguishable mode structure is obtained in post-processing from the correlation measurement data by orthogonalization. We show that the number of reconstructable modes increases with the number of time delays used and decreases with the temporal extent of the local oscillator. Additionally, we compare dual-pulse homodyne detection and electro-optic sampling. By analysing the (quantum) correlations present in the measurement data, we show how thermalisation of the quantum state during detection leads to the requirement of correlation measurements. Furthermore, we open an avenue to extending our tomography scheme to non-Gaussian states.

Similar content being viewed by others

Observation of Joule–Thomson photon-gas expansion

Article 14 January 2025

Ultrafast pump-probe phase-randomized tomography

Article Open access 06 March 2025

Learning quantum states of continuous-variable systems

Article Open access 26 November 2025

Data availability

All data presented here is available online89.

Code availability

The Python code supporting the results can be obtained from the GitLab repository: https://gitlab.inf.uni-konstanz.de/emanuel.hubenschmid/subcycleq. A archived version of the specific code used here is available online89.

References

  1. Slusher, R. E., Grangier, P., LaPorta, A., Yurke, B. & Potasek, M. J. Pulsed squeezed light. Phys. Rev. Lett. 59, 2566–2569 (1987).

    Google Scholar 

  2. Hirano, T. & Matsuoka, M. Broadband squeezing of light by pulse excitation. Opt. Lett. 15, 1153 (1990).

    Google Scholar 

  3. Smithey, D. T., Beck, M., Belsley, M. & Raymer, M. G. Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light. Phys. Rev. Lett. 69, 2650–2653 (1992).

    Google Scholar 

  4. Gulla, J., Ryen, K. & Skaar, J. Limits for realizing single photons Phys. Rev. A 108, 063708 (2021).

  5. Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics–the emergence of multimode quantum non-gaussian physics. Optica 11, 896 (2024).

    Google Scholar 

  6. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Google Scholar 

  7. Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004).

    Google Scholar 

  8. Lance, A. M. et al. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 180503 (2005).

    Google Scholar 

  9. Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012).

  10. Usenko, V. C. & Grosshans, F. Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015).

    Google Scholar 

  11. Diamanti, E. & Leverrier, A. Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17, 6072–6092 (2015).

    Google Scholar 

  12. Hosseinidehaj, N., Babar, Z., Malaney, R., Ng, S. X. & Hanzo, L. Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 21, 881–919 (2019).

    Google Scholar 

  13. Silberhorn, C., Ralph, T. C., Lütkenhaus, N. & Leuchs, G. Continuous variable quantum cryptography: beating the 3db loss limit. Phys. Rev. Lett. 89, 167901 (2002).

    Google Scholar 

  14. Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).

    Google Scholar 

  15. Christiansen, V. R., Kiilerich, A. H. & Mølmer, K. Interactions of quantum systems with pulses of quantized radiation: From a cascaded master equation to a traveling mode perspective. Phys. Rev. A 107, 013706 (2023).

    Google Scholar 

  16. Christiansen, V. R., Middelhede Lund, M., Yang, F. & Mølmer, K. Jaynes-cummings interaction with a traveling light pulse. J. Optical Soc. Am. B 41, C140 (2024).

    Google Scholar 

  17. Christiansen, V. R. & Mølmer, K. Interactions in quantum networks with pulse propagation delays (Springer, 2025).

  18. Zavatta, A., Bellini, M., Ramazza, P. L., Marin, F. & Arecchi, F. T. Time-domain analysis of quantum states of light: noise characterization and homodyne tomography. J. Opt. Soc. Am. B. 19, 1189 (2002).

    Google Scholar 

  19. Zavatta, A., Viciani, S. & Bellini, M. Non-classical field characterization by high-frequency, time-domain quantum homodyne tomography. Laser Phys. Lett. 3, 3–16 (2005).

    Google Scholar 

  20. Haderka, O., Michálek, V., Urbášek, V. & Ježek, M. Fast time-domain balanced homodyne detection of light. Appl. Opt. 48, 2884 (2009).

    Google Scholar 

  21. Okubo, R., Hirano, M., Zhang, Y. & Hirano, T. Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz. Opt. Lett. 33, 1458 (2008).

    Google Scholar 

  22. Ansari, V., Harder, G., Allgaier, M., Brecht, B. & Silberhorn, C. Temporal-mode measurement tomography of a quantum pulse gate. Phys. Rev. A 96, 063817 (2017).

    Google Scholar 

  23. Tiedau, J. et al. Quantum state and mode profile tomography by the overlap. N. J. Phys. 20, 033003 (2018).

    Google Scholar 

  24. Ansari, V. et al. Tomography and purification of the temporal-mode structure of quantum light. Phys. Rev. Lett. 120, 213601 (2018).

    Google Scholar 

  25. Gil-Lopez, J. et al. Universal compressive tomography in the time-frequency domain. Optica 8, 1296 (2021).

    Google Scholar 

  26. Kalash, M. & Chekhova, M. V. Wigner function tomography via optical parametric amplification. Optica 10, 1142 (2023).

    Google Scholar 

  27. Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).

    Google Scholar 

  28. Mrówczyński, S. & Müller, B. Wigner functional approach to quantum field dynamics. Phys. Rev. D. 50, 7542–7552 (1994).

    Google Scholar 

  29. Roux, F. S. & Fabre, N. Wigner functional theory for quantum optics. Preprint at https://arxiv.org/abs/1901.07782 (2019).

  30. Virally, S. & Reulet, B. Unidimensional time-domain quantum optics. Phys. Rev. A 100, 023833 (2019).

    Google Scholar 

  31. Roux, F. S. Erratum: Combining spatiotemporal and particle-number degrees of freedom [phys. rev. a 98, 043841 (2018)]. Phys. Rev. A 101, 019903 (2020).

    Google Scholar 

  32. Adesso, G., Ragy, S. & Lee, A. R. Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014).

    Google Scholar 

  33. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Google Scholar 

  34. Raymer, M. G. & Walmsley, I. A. Temporal modes in quantum optics: then and now. Phys. Scr. 95, 064002 (2020).

    Google Scholar 

  35. Brecht, B., Reddy, D. V., Silberhorn, C. & G. Raymer, M. Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X 5, 041017 (2015).

    Google Scholar 

  36. Freyberger, M., Vogel, K. & Schleich, W. P. From photon counts to quantum phase. Phys. Lett. A 176, 41–46 (1993).

    Google Scholar 

  37. Smithey, D. T., Beck, M., Cooper, J. & Raymer, M. G. Measurement of number-phase uncertainty relations of optical fields. Phys. Rev. A 48, 3159–3167 (1993).

    Google Scholar 

  38. Leonhardt, U. & Paul, H. Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 48, 4598–4604 (1993).

    Google Scholar 

  39. Zucchetti, A., Vogel, W. & Welsch, D.-G. Quantum-state homodyne measurement with vacuum ports. Phys. Rev. A 54, 856–862 (1996).

    Google Scholar 

  40. R^eháček, J., T., Y. S., Hradil, Z. & Wallentowitz, S. Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography with quadrature squeezing. Sci. Rep. 5, 12289 (2015).

  41. Hubenschmid, E., Guedes, T. L. M. & Burkard, G. Complete positive operator-valued measure description of multichannel quantum electro-optic sampling with monochromatic field modes. Phys. Rev. A 106, 043713 (2022).

    Google Scholar 

  42. Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989).

    Google Scholar 

  43. Leonhardt, U. & Paul, H. High-accuracy optical homodyne detection with low-efficiency detectors: “preamplification” from antisqueezing. Phys. Rev. Lett. 72, 4086–4089 (1994).

    Google Scholar 

  44. Wallentowitz, S. & Vogel, W. Unbalanced homodyning for quantum state measurements. Phys. Rev. A 53, 4528–4533 (1996).

    Google Scholar 

  45. Luis, A., Sperling, J. & Vogel, W. Nonclassicality phase-space functions: more insight with fewer detectors. Phys. Rev. Lett. 114, 103602 (2015).

    Google Scholar 

  46. Bohmann, M. et al. Incomplete detection of nonclassical phase-space distributions. Phys. Rev. Lett. 120, 063607 (2018).

    Google Scholar 

  47. Knyazev, E., Spasibko, K. Y., Chekhova, M. V. & Khalili, F. Y. Quantum tomography enhanced through parametric amplification. N. J. Phys. 20, 013005 (2018).

    Google Scholar 

  48. Olivares, S., Allevi, A., Caiazzo, G., Paris, M. G. A. & Bondani, M. Quantum tomography of light states by photon-number-resolving detectors. N. J. Phys. 21, 103045 (2019).

    Google Scholar 

  49. Smithey, D. T., Beck, M., Raymer, M. G. & Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993).

    Google Scholar 

  50. Hubenschmid, E., Guedes, T. L. M. & Burkard, G. Optical time-domain quantum state tomography on a subcycle scale. Phys. Rev. X 14, 041032 (2024).

    Google Scholar 

  51. Yang, G., Kizmann, M., Leitenstorfer, A. & Moskalenko, A. S. Subcycle tomography of quantum light. Preprint at https://arxiv.org/abs/2307.12812 (2023).

  52. Onoe, S., Virally, S. & Seletskiy, D. V. Direct measurement of the Husimi-Q function of the electric-field in the time-domain. Preprint at https://arxiv.org/abs/2307.13088 (2023).

  53. Lordi, N., Tsao, E. J., Lind, A. J., Diddams, S. A. & Combes, J. Quantum theory of temporally mismatched homodyne measurements with applications to optical-frequency-comb metrology. Phys. Rev. A 109, 033722 (2024).

    Google Scholar 

  54. Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).

    Google Scholar 

  55. Moskalenko, A. S., Riek, C., Seletskiy, D. V., Burkard, G. & Leitenstorfer, A. Paraxial theory of direct electro-optic sampling of the quantum vacuum. Phys. Rev. Lett. 115, 263601 (2015).

    Google Scholar 

  56. Kizmann, M., Moskalenko, A. S., Leitenstorfer, A., Burkard, G. & Mukamel, S. Quantum susceptibilities in time-domain sampling of electric field fluctuations. Laser Photonics Rev. 16, 2100423 (2022).

    Google Scholar 

  57. Onoe, S. et al. Realizing a rapidly switched Unruh-DeWitt detector through electro-optic sampling of the electromagnetic vacuum. Phys. Rev. D. 105, 056023 (2022).

    Google Scholar 

  58. Guedes, T. L. M. et al. Back action in quantum electro-optic sampling of electromagnetic vacuum fluctuations. Phys. Rev. Res. 5, 013151 (2023).

    Google Scholar 

  59. Lindel, F., Bennett, R. & Buhmann, S. Y. Macroscopic quantum electrodynamics approach to nonlinear optics and application to polaritonic quantum-vacuum detection. Phys. Rev. A 103, 033705 (2021).

    Google Scholar 

  60. Benea-Chelmus, I.-C. et al. Electro-optic sampling of classical and quantum light. Optica 12, 546 (2025).

    Google Scholar 

  61. Riek, C. et al. Subcycle quantum electrodynamics. Nature 541, 376–379 (2017).

    Google Scholar 

  62. Kizmann, M. et al. Subcycle squeezing of light from a time flow perspective. Nat. Phys. 15, 960–966 (2019).

    Google Scholar 

  63. Guedes, T. L. M. et al. Spectra of ultrabroadband squeezed pulses and the finite-time Unruh-Davies effect. Phys. Rev. Lett. 122, 053604 (2019).

    Google Scholar 

  64. Namba, S. Electro-optical effect of zincblende. J. Opt. Soc. Am. 51, 76 (1961).

    Google Scholar 

  65. Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B. 16, 1204 (1999).

    Google Scholar 

  66. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C. & Knox, W. H. Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999).

    Google Scholar 

  67. Kempf, H. et al. Direct sampling of femtosecond electric-field waveforms from an optical parametric oscillator. APL Photonics 9, 036111 (2024).

  68. Beckh, C., Sulzer, P., Fritzsche, N., Riek, C. & Leitenstorfer, A. Analysis of subcycle electro-optic sampling without background. J. Infrared Millim. Terahertz Waves 42, 701–714 (2021).

    Google Scholar 

  69. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical bloch oscillations. Nat. Photonics 8, 119–123 (2014).

    Google Scholar 

  70. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Google Scholar 

  71. Virally, S., Cusson, P. & Seletskiy, D. V. Enhanced electro-optic sampling with quantum probes. Phys. Rev. Lett. 127, 270504 (2021).

    Google Scholar 

  72. Sulzer, P. et al. Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling. Phys. Rev. A 101, 033821 (2020).

    Google Scholar 

  73. Kopylov, D. A., Meier, T. & Sharapova, P. R. Theory of multimode squeezed light generation in lossy media. Quantum 9, 1621 (2025).

  74. Yurke, B. & Denker, J. S. Quantum network theory. Phys. Rev. A 29, 1419–1437 (1984).

    Google Scholar 

  75. Walker, N. G. & Carroll, J. E. Multiport homodyne detection near the quantum noise limit. Opt. Quant. Electron. 18, 355–363 (1986).

    Google Scholar 

  76. Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997).

    Google Scholar 

  77. Benea-Chelmus, I.-C., Settembrini, F. F., Scalari, G. & Faist, J. Electric field correlation measurements on the electromagnetic vacuum state. Nature 568, 202–206 (2019).

    Google Scholar 

  78. Lindel, F., Bennett, R. & Buhmann, S. Y. Theory of polaritonic quantum-vacuum detection. Phys. Rev. A 102, 041701 (2020).

    Google Scholar 

  79. Settembrini, F. F., Lindel, F., Herter, A. M., Buhmann, S. Y. & Faist, J. Detection of quantum-vacuum field correlations outside the light cone. Nat. Commun. 13, 3383 (2022).

  80. Settembrini, F. F., Herter, A. & Faist, J. Third order nonlinear correlation of the electromagnetic vacuum at near-infrared frequencies. New J. Phys. 26, 043017 (2023).

  81. Lindel, F., Herter, A. M., Faist, J. & Buhmann, S. Y. Probing vacuum field fluctuations and source radiation separately in space and time. Phys. Rev. Res. 5, 043207 (2023).

    Google Scholar 

  82. Lindel, F., Herter, A., Gebhart, V., Faist, J. & Buhmann, S. Y. Entanglement harvesting from electromagnetic quantum fields. Phys. Rev. A 110, 022414 (2024).

    Google Scholar 

  83. Weiss, M. A. et al. Discovery of ultrafast spontaneous spin switching in an antiferromagnet by femtosecond noise correlation spectroscopy. Nat. Commun.14, 7651 (2023).

  84. McAlister, D. F. & Raymer, M. G. Correlation and joint density matrix of two spatial-temporal modes from balanced-homodyne sampling. J. Mod. Opt. 44, 2359–2383 (1997).

    Google Scholar 

  85. McAlister, D. F. & Raymer, M. G. Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection. Phys. Rev. A 55, R1609–R1612 (1997).

    Google Scholar 

  86. Yang, G., Sharma, S. & Moskalenko, A. S. Electro-optic sampling of the electric-field operator for ultrabroadband pulses of gaussian quantum light. Quantum Sci. Technol. 10, 045033 (2025).

    Google Scholar 

  87. Moore, E. H. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920).

    Google Scholar 

  88. Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 51, 406–413 (1955).

    Google Scholar 

  89. Hubenschmid, E. SubcycleQ (software). Zenodo. https://doi.org/10.5281/zenodo.17375821 (2025).

  90. Tziperman, O., Christiansen, V. R., Kaminer, I. & Mølmer, K. Parametric amplification of a quantum pulse. Phys. Rev. A 110, 053712 (2024).

    Google Scholar 

  91. Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon fock state. Phys. Rev. Lett. 87, 050402 (2001).

    Google Scholar 

  92. Boyd, R. W.Nonlinear optics (Elsevier, 2019).

  93. Marple, D. T. F. Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542 (1964).

    Google Scholar 

  94. Adesso, G., Serafini, A. & Illuminati, F. Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004).

    Google Scholar 

  95. Adesso, G. & Datta, A. Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010).

    Google Scholar 

  96. Sperling, J., Perez-Leija, A., Busch, K. & Silberhorn, C. Mode-independent quantum entanglement for light. Phys. Rev. A 100, 062129 (2019).

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) - Project No. 425217212 - SFB 1432.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Department of Physics, University of Konstanz, Konstanz, Germany

    Emanuel Hubenschmid & Guido Burkard

Authors
  1. Emanuel Hubenschmid
    View author publications

    Search author on:PubMed Google Scholar

  2. Guido Burkard
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.H. performed the calculations and wrote the manuscript. G.B. improved the manuscript and supervised the project.

Corresponding authors

Correspondence to Emanuel Hubenschmid or Guido Burkard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Ileana-Cristina Benea-Chelmus, Aleksei Gaier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubenschmid, E., Burkard, G. Time-domain field correlation measurements enable tomography of highly multimode quantum states of light. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02493-y

Download citation

  • Received: 14 August 2025

  • Accepted: 02 January 2026

  • Published: 15 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02493-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing