Abstract
Recent progress in ultrafast optics facilitates the investigation of the dynamics of highly multimode quantum states of light. Yet, the complete tomographic reconstruction of optical quantum states with prior unknown statistics and dynamics is still challenging, since state-of-the-art tomographic methods require the measurement of orthogonal and distinguishable modes. Here, we propose a tomography scheme based on time-domain quadrature correlation measurements and theoretically demonstrate its ability to reconstruct highly multimode Gaussian states. In contrast to (eight-port) homodyne detection, the two local oscillator pulses are shorter in time and are (independently) time-delayed against the pulsed quantum state. The distinguishable mode structure is obtained in post-processing from the correlation measurement data by orthogonalization. We show that the number of reconstructable modes increases with the number of time delays used and decreases with the temporal extent of the local oscillator. Additionally, we compare dual-pulse homodyne detection and electro-optic sampling. By analysing the (quantum) correlations present in the measurement data, we show how thermalisation of the quantum state during detection leads to the requirement of correlation measurements. Furthermore, we open an avenue to extending our tomography scheme to non-Gaussian states.
Similar content being viewed by others
Data availability
All data presented here is available online89.
Code availability
The Python code supporting the results can be obtained from the GitLab repository: https://gitlab.inf.uni-konstanz.de/emanuel.hubenschmid/subcycleq. A archived version of the specific code used here is available online89.
References
Slusher, R. E., Grangier, P., LaPorta, A., Yurke, B. & Potasek, M. J. Pulsed squeezed light. Phys. Rev. Lett. 59, 2566–2569 (1987).
Hirano, T. & Matsuoka, M. Broadband squeezing of light by pulse excitation. Opt. Lett. 15, 1153 (1990).
Smithey, D. T., Beck, M., Belsley, M. & Raymer, M. G. Sub-shot-noise correlation of total photon number using macroscopic twin pulses of light. Phys. Rev. Lett. 69, 2650–2653 (1992).
Gulla, J., Ryen, K. & Skaar, J. Limits for realizing single photons Phys. Rev. A 108, 063708 (2021).
Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics–the emergence of multimode quantum non-gaussian physics. Optica 11, 896 (2024).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004).
Lance, A. M. et al. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 180503 (2005).
Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012).
Usenko, V. C. & Grosshans, F. Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015).
Diamanti, E. & Leverrier, A. Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17, 6072–6092 (2015).
Hosseinidehaj, N., Babar, Z., Malaney, R., Ng, S. X. & Hanzo, L. Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 21, 881–919 (2019).
Silberhorn, C., Ralph, T. C., Lütkenhaus, N. & Leuchs, G. Continuous variable quantum cryptography: beating the 3db loss limit. Phys. Rev. Lett. 89, 167901 (2002).
Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).
Christiansen, V. R., Kiilerich, A. H. & Mølmer, K. Interactions of quantum systems with pulses of quantized radiation: From a cascaded master equation to a traveling mode perspective. Phys. Rev. A 107, 013706 (2023).
Christiansen, V. R., Middelhede Lund, M., Yang, F. & Mølmer, K. Jaynes-cummings interaction with a traveling light pulse. J. Optical Soc. Am. B 41, C140 (2024).
Christiansen, V. R. & Mølmer, K. Interactions in quantum networks with pulse propagation delays (Springer, 2025).
Zavatta, A., Bellini, M., Ramazza, P. L., Marin, F. & Arecchi, F. T. Time-domain analysis of quantum states of light: noise characterization and homodyne tomography. J. Opt. Soc. Am. B. 19, 1189 (2002).
Zavatta, A., Viciani, S. & Bellini, M. Non-classical field characterization by high-frequency, time-domain quantum homodyne tomography. Laser Phys. Lett. 3, 3–16 (2005).
Haderka, O., Michálek, V., Urbášek, V. & Ježek, M. Fast time-domain balanced homodyne detection of light. Appl. Opt. 48, 2884 (2009).
Okubo, R., Hirano, M., Zhang, Y. & Hirano, T. Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz. Opt. Lett. 33, 1458 (2008).
Ansari, V., Harder, G., Allgaier, M., Brecht, B. & Silberhorn, C. Temporal-mode measurement tomography of a quantum pulse gate. Phys. Rev. A 96, 063817 (2017).
Tiedau, J. et al. Quantum state and mode profile tomography by the overlap. N. J. Phys. 20, 033003 (2018).
Ansari, V. et al. Tomography and purification of the temporal-mode structure of quantum light. Phys. Rev. Lett. 120, 213601 (2018).
Gil-Lopez, J. et al. Universal compressive tomography in the time-frequency domain. Optica 8, 1296 (2021).
Kalash, M. & Chekhova, M. V. Wigner function tomography via optical parametric amplification. Optica 10, 1142 (2023).
Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).
Mrówczyński, S. & Müller, B. Wigner functional approach to quantum field dynamics. Phys. Rev. D. 50, 7542–7552 (1994).
Roux, F. S. & Fabre, N. Wigner functional theory for quantum optics. Preprint at https://arxiv.org/abs/1901.07782 (2019).
Virally, S. & Reulet, B. Unidimensional time-domain quantum optics. Phys. Rev. A 100, 023833 (2019).
Roux, F. S. Erratum: Combining spatiotemporal and particle-number degrees of freedom [phys. rev. a 98, 043841 (2018)]. Phys. Rev. A 101, 019903 (2020).
Adesso, G., Ragy, S. & Lee, A. R. Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21, 1440001 (2014).
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).
Raymer, M. G. & Walmsley, I. A. Temporal modes in quantum optics: then and now. Phys. Scr. 95, 064002 (2020).
Brecht, B., Reddy, D. V., Silberhorn, C. & G. Raymer, M. Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X 5, 041017 (2015).
Freyberger, M., Vogel, K. & Schleich, W. P. From photon counts to quantum phase. Phys. Lett. A 176, 41–46 (1993).
Smithey, D. T., Beck, M., Cooper, J. & Raymer, M. G. Measurement of number-phase uncertainty relations of optical fields. Phys. Rev. A 48, 3159–3167 (1993).
Leonhardt, U. & Paul, H. Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 48, 4598–4604 (1993).
Zucchetti, A., Vogel, W. & Welsch, D.-G. Quantum-state homodyne measurement with vacuum ports. Phys. Rev. A 54, 856–862 (1996).
R^eháček, J., T., Y. S., Hradil, Z. & Wallentowitz, S. Surmounting intrinsic quantum-measurement uncertainties in Gaussian-state tomography with quadrature squeezing. Sci. Rep. 5, 12289 (2015).
Hubenschmid, E., Guedes, T. L. M. & Burkard, G. Complete positive operator-valued measure description of multichannel quantum electro-optic sampling with monochromatic field modes. Phys. Rev. A 106, 043713 (2022).
Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989).
Leonhardt, U. & Paul, H. High-accuracy optical homodyne detection with low-efficiency detectors: “preamplification” from antisqueezing. Phys. Rev. Lett. 72, 4086–4089 (1994).
Wallentowitz, S. & Vogel, W. Unbalanced homodyning for quantum state measurements. Phys. Rev. A 53, 4528–4533 (1996).
Luis, A., Sperling, J. & Vogel, W. Nonclassicality phase-space functions: more insight with fewer detectors. Phys. Rev. Lett. 114, 103602 (2015).
Bohmann, M. et al. Incomplete detection of nonclassical phase-space distributions. Phys. Rev. Lett. 120, 063607 (2018).
Knyazev, E., Spasibko, K. Y., Chekhova, M. V. & Khalili, F. Y. Quantum tomography enhanced through parametric amplification. N. J. Phys. 20, 013005 (2018).
Olivares, S., Allevi, A., Caiazzo, G., Paris, M. G. A. & Bondani, M. Quantum tomography of light states by photon-number-resolving detectors. N. J. Phys. 21, 103045 (2019).
Smithey, D. T., Beck, M., Raymer, M. G. & Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993).
Hubenschmid, E., Guedes, T. L. M. & Burkard, G. Optical time-domain quantum state tomography on a subcycle scale. Phys. Rev. X 14, 041032 (2024).
Yang, G., Kizmann, M., Leitenstorfer, A. & Moskalenko, A. S. Subcycle tomography of quantum light. Preprint at https://arxiv.org/abs/2307.12812 (2023).
Onoe, S., Virally, S. & Seletskiy, D. V. Direct measurement of the Husimi-Q function of the electric-field in the time-domain. Preprint at https://arxiv.org/abs/2307.13088 (2023).
Lordi, N., Tsao, E. J., Lind, A. J., Diddams, S. A. & Combes, J. Quantum theory of temporally mismatched homodyne measurements with applications to optical-frequency-comb metrology. Phys. Rev. A 109, 033722 (2024).
Riek, C. et al. Direct sampling of electric-field vacuum fluctuations. Science 350, 420–423 (2015).
Moskalenko, A. S., Riek, C., Seletskiy, D. V., Burkard, G. & Leitenstorfer, A. Paraxial theory of direct electro-optic sampling of the quantum vacuum. Phys. Rev. Lett. 115, 263601 (2015).
Kizmann, M., Moskalenko, A. S., Leitenstorfer, A., Burkard, G. & Mukamel, S. Quantum susceptibilities in time-domain sampling of electric field fluctuations. Laser Photonics Rev. 16, 2100423 (2022).
Onoe, S. et al. Realizing a rapidly switched Unruh-DeWitt detector through electro-optic sampling of the electromagnetic vacuum. Phys. Rev. D. 105, 056023 (2022).
Guedes, T. L. M. et al. Back action in quantum electro-optic sampling of electromagnetic vacuum fluctuations. Phys. Rev. Res. 5, 013151 (2023).
Lindel, F., Bennett, R. & Buhmann, S. Y. Macroscopic quantum electrodynamics approach to nonlinear optics and application to polaritonic quantum-vacuum detection. Phys. Rev. A 103, 033705 (2021).
Benea-Chelmus, I.-C. et al. Electro-optic sampling of classical and quantum light. Optica 12, 546 (2025).
Riek, C. et al. Subcycle quantum electrodynamics. Nature 541, 376–379 (2017).
Kizmann, M. et al. Subcycle squeezing of light from a time flow perspective. Nat. Phys. 15, 960–966 (2019).
Guedes, T. L. M. et al. Spectra of ultrabroadband squeezed pulses and the finite-time Unruh-Davies effect. Phys. Rev. Lett. 122, 053604 (2019).
Namba, S. Electro-optical effect of zincblende. J. Opt. Soc. Am. 51, 76 (1961).
Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B. 16, 1204 (1999).
Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C. & Knox, W. H. Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999).
Kempf, H. et al. Direct sampling of femtosecond electric-field waveforms from an optical parametric oscillator. APL Photonics 9, 036111 (2024).
Beckh, C., Sulzer, P., Fritzsche, N., Riek, C. & Leitenstorfer, A. Analysis of subcycle electro-optic sampling without background. J. Infrared Millim. Terahertz Waves 42, 701–714 (2021).
Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical bloch oscillations. Nat. Photonics 8, 119–123 (2014).
Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).
Virally, S., Cusson, P. & Seletskiy, D. V. Enhanced electro-optic sampling with quantum probes. Phys. Rev. Lett. 127, 270504 (2021).
Sulzer, P. et al. Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling. Phys. Rev. A 101, 033821 (2020).
Kopylov, D. A., Meier, T. & Sharapova, P. R. Theory of multimode squeezed light generation in lossy media. Quantum 9, 1621 (2025).
Yurke, B. & Denker, J. S. Quantum network theory. Phys. Rev. A 29, 1419–1437 (1984).
Walker, N. G. & Carroll, J. E. Multiport homodyne detection near the quantum noise limit. Opt. Quant. Electron. 18, 355–363 (1986).
Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997).
Benea-Chelmus, I.-C., Settembrini, F. F., Scalari, G. & Faist, J. Electric field correlation measurements on the electromagnetic vacuum state. Nature 568, 202–206 (2019).
Lindel, F., Bennett, R. & Buhmann, S. Y. Theory of polaritonic quantum-vacuum detection. Phys. Rev. A 102, 041701 (2020).
Settembrini, F. F., Lindel, F., Herter, A. M., Buhmann, S. Y. & Faist, J. Detection of quantum-vacuum field correlations outside the light cone. Nat. Commun. 13, 3383 (2022).
Settembrini, F. F., Herter, A. & Faist, J. Third order nonlinear correlation of the electromagnetic vacuum at near-infrared frequencies. New J. Phys. 26, 043017 (2023).
Lindel, F., Herter, A. M., Faist, J. & Buhmann, S. Y. Probing vacuum field fluctuations and source radiation separately in space and time. Phys. Rev. Res. 5, 043207 (2023).
Lindel, F., Herter, A., Gebhart, V., Faist, J. & Buhmann, S. Y. Entanglement harvesting from electromagnetic quantum fields. Phys. Rev. A 110, 022414 (2024).
Weiss, M. A. et al. Discovery of ultrafast spontaneous spin switching in an antiferromagnet by femtosecond noise correlation spectroscopy. Nat. Commun.14, 7651 (2023).
McAlister, D. F. & Raymer, M. G. Correlation and joint density matrix of two spatial-temporal modes from balanced-homodyne sampling. J. Mod. Opt. 44, 2359–2383 (1997).
McAlister, D. F. & Raymer, M. G. Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection. Phys. Rev. A 55, R1609–R1612 (1997).
Yang, G., Sharma, S. & Moskalenko, A. S. Electro-optic sampling of the electric-field operator for ultrabroadband pulses of gaussian quantum light. Quantum Sci. Technol. 10, 045033 (2025).
Moore, E. H. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920).
Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 51, 406–413 (1955).
Hubenschmid, E. SubcycleQ (software). Zenodo. https://doi.org/10.5281/zenodo.17375821 (2025).
Tziperman, O., Christiansen, V. R., Kaminer, I. & Mølmer, K. Parametric amplification of a quantum pulse. Phys. Rev. A 110, 053712 (2024).
Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon fock state. Phys. Rev. Lett. 87, 050402 (2001).
Boyd, R. W.Nonlinear optics (Elsevier, 2019).
Marple, D. T. F. Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542 (1964).
Adesso, G., Serafini, A. & Illuminati, F. Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004).
Adesso, G. & Datta, A. Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010).
Sperling, J., Perez-Leija, A., Busch, K. & Silberhorn, C. Mode-independent quantum entanglement for light. Phys. Rev. A 100, 062129 (2019).
Acknowledgements
We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) - Project No. 425217212 - SFB 1432.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
E.H. performed the calculations and wrote the manuscript. G.B. improved the manuscript and supervised the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Physics thanks Ileana-Cristina Benea-Chelmus, Aleksei Gaier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hubenschmid, E., Burkard, G. Time-domain field correlation measurements enable tomography of highly multimode quantum states of light. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02493-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005-026-02493-y


