Abstract
Boron-rich lithium borocarbides are promising candidates for phonon-mediated high-temperature superconductors due to their metallic σ-bonding electrons. Here, we use the cluster expansion method to identify energetically stable configurations (colorings) of Li2B3C and Li3B4C2, which are characterized by a distinctive pattern of alternating B-B and B-C zigzag chains. Surprisingly, the optimal configuration of Li2B3C exhibits an extremely low superconducting transition temperature of Tc < 0.03 K, which is attributed to the suppression of deformation potentials near the Fermi level caused by the specific electron filling of B-B zigzag chains. However, the σ-bonding electrons at the Fermi level are highly sensitive to external strain or pressure. Specifically, applying a −5% compressive uniaxial strain can significantly enhance the electron-phonon coupling and the Eliashberg spectral function, boosting up Tc to 37 K. This work not only presents a strategy for achieving high critical temperatures in LinBn+1Cn+1 compounds, but also provides valuable insights into the complex interplay between electronic structure and superconducting interaction.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Code availability
The calculations were performed using the proprietary code VASP62, the open-source code ATAT65, the open-source code Wannier9067, the open-source code Quantum ESPRESSO69, and the open-source code EPW42. Wannier90 and EPW are freely released under the GNU General Public License (v2). ATAT and Quantum ESPRESSO are freely released under the Creative Commons Attribution 4.0 International License.
References
Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. für. Phys. B Condens. Matter 64, 189–193 (1986).
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).
Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
Gao, M., Lu, Z.-Y. & Xiang, T. Finding high-temperature superconductors by metallizing the σ-bonding electrons. Physics 44, 421–426 (2015).
An, J. M. & Pickett, W. E. Superconductivity of MgB2: Covalent Bonds Driven Metallic. Phys. Rev. Lett. 86, 4366–4369 (2001).
Gao, M., Lu, Z.-Y. & Xiang, T. Prediction of phonon-mediated high-temperature superconductivity in Li3B4C2. Phys. Rev. B 91, 045132 (2015).
Deng, S., Simon, A. & Köhler, J. Superconductivity in MgB2: a case study of the “flat Band–Steep band” scenario. J. Supercond. 16, 477–481 (2003).
Deng, S., Simon, A. & Köhler, J. A" flat/steep band" model for superconductivity. Inter. J. Mod. Phys. B 19, 29–36 (2005).
Lee, K.-W. & Pickett, W. E. Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93, 237003 (2004).
Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
Gu, Y., Wu, X., Jiang, K. & Hu, J. BaCuS2: a superconductor with moderate electron-electron correlation. Chin. Phys. Lett. 38, 017501 (2021).
Geng, N. et al. Conventional high-temperature superconductivity in metallic, covalently bonded, binary-guest c–b clathrates. J. Am. Chem. Soc. 145, 1696–1706 (2023).
Geng, N., Hilleke, K. P., Belli, F., Das, P. K. & Zurek, E. Superconductivity in CH4 and BH4- containing compounds derived from the high-pressure superhydrides. Mater. Today Phys. 44, 101443 (2024).
Zhang, J.-F. et al. Vital influence of hydrogen σ antibonding states on high-Tc superconductivity in SH3 under ultrahigh pressure. Phys. Rev. B 108, 094519 (2023).
Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656–4659 (2001).
Xi, X. X. Two-band superconductor magnesium diboride. Rep. Prog. Phys. 71, 116501 (2008).
Rosner, H., Kitaigorodsky, A. & Pickett, W. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett. 88, 127001 (2002).
Dewhurst, J., Sharma, S., Ambrosch-Draxl, C. & Johansson, B. First-principles calculation of superconductivity in hole-doped LiBC: Tc = 65K. Phys. Rev. B 68, 020504 (2003).
Miao, R. et al. First-principles study of superconductivity in the hole self-doped LiB1.1C0.9. J. Appl. Phys. 113, 133910 (2013).
Bazhirov, T., Sakai, Y., Saito, S. & Cohen, M. L. Electron-phonon coupling and superconductivity in Li -intercalated layered borocarbide compounds. Phys. Rev. B 89, 045136 (2014).
Li, Q.-Z., Yan, X.-W., Gao, M. & Wang, J. Electron-phonon coupling and superconductivity in LiB1+xC1−x. Eur. Phys. Lett. 122, 47001 (2018).
Quan, Y. & Pickett, W. E. Li2xBC3: Prediction of a second MgB2-class high-temperature superconductor. Phys. Rev. B 102, 144504 (2020).
Liu, H.-D., Wang, B.-T., Fu, Z.-G., Lu, H.-Y. & Zhang, P. Three-gap superconductivity with Tc above 80 K in hydrogenated 2D monolayer LiBC. Phys. Rev. Res. 6, 033241 (2024).
Yu, W. et al. Nontrivial d-electrons driven superconductivity of transition metal diborides. New J. Phys. 26, 063028 (2024).
Pickett, W. E. Design for a room-temperature superconductor. J. Supercond. Nov. Mag. 19, 291–297 (2006).
Pickett, W. E. Room temperature superconductivity revolution: Foreshadowed by Victorians, enabled by millenials. arXiv preprint arXiv:1801.00165 (2017).
Fogg, A., Chalker, P., Claridge, J., Darling, G. & Rosseinsky, M. LiBC electronic, vibrational, structural, and low-temperature chemical behavior of a layered material isoelectronic with MgB2. Phys. Rev. B 67, 245106 (2003).
Karimov, P. et al. Resonant inelastic soft X-ray scattering and electronic structure of LiBC. J. Phys. Condens. Matter 16, 5137 (2004).
Bharathi, A. et al. Synthesis and search for superconductivity in LiBC. Solid State Commun. 124, 423–428 (2002).
Fogg, A., Claridge, J., Darling, G. & Rosseinsky, M. Synthesis and characteristion of LixBC-hole doping does not induce superconductivity. Chem. Commun. 1348–1349 (2003).
Souptel, D., Hossain, Z., Behr, G., Löser, W. & Geibel, C. Synthesis and physical properties of LiBC intermetallics. Solid State Commun. 125, 17–21 (2003).
Zhao, L., Klavins, P. & Liu, K. Synthesis and properties of hole-doped Li1−xBC. J. Appl. Phys. 93, 8653–8655 (2003).
Nakamori, Y. & Orimo, S. -i Synthesis and characterization of single phase LixBC (x= 0.5 and 1.0), using Li hydride as a starting material. J. Alloy. Compd. 370, L7–L9 (2004).
Fogg, A. M., Meldrum, J., Darling, G. R., Claridge, J. B. & Rosseinsky, M. J. Chemical control of electronic structure and superconductivity in layered borides and borocarbides: understanding the absence of superconductivity in LixBC. J. Am. Chem. Soc. 128, 10043–10053 (2006).
Burdett, J. K., Lee, S. & McLarnan, T. J. Coloring problem. J. Am. Chem. Soc. 107, 3083–3089 (1985).
Miller, G. J. The “coloring problem” in solids: How it affects structure, composition and properties. Euro. J. Inorg. Chem. 523–536 (1998).
Sanchez, J. M., Ducastelle, F. & Gratias, D. Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Appl. 128, 334–350 (1984).
De Fontaine, D. Cluster approach to order-disorder transformations in alloys. Solid State Phys. 47, 33–176 (1994).
Zunger, A. First-principles statistical mechanics of semiconductor alloys and intermetallic compounds, 361–419 (Springer, 1994).
Giustino, F., Cohen, M. L. & Louie, S. G. Electron-phonon interaction using wannier functions. Phys. Rev. B 76, 165108 (2007).
Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).
Lee, H. et al. Electron-phonon physics from first principles using the EPW code. Npj Comput. Mater. 9 (2023).
Allen, P. B. Neutron spectroscopy of superconductors. Phys. Rev. B 6, 2577 (1972).
Allen, P. B. & Dynes, R. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975).
Khan, F. & Allen, P. Deformation potentials and electron-phonon scattering: Two new theorems. Phys. Rev. B 29, 3341 (1984).
Lee, K.-W. & Pickett, W. Crystal symmetry, electron-phonon coupling, and superconducting tendencies in Li2Pd3B and Li2Pt3B. Phys. Rev. B 72, 174505 (2005).
Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).
Hoffmann, R. Solids and surfaces: a chemist’s view of bonding in extended structures (John Wiley & Sons, 1991).
Dronskowski, R. & Blöchl, P. E. Crystal orbital hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).
Bhaumik, A., Sachan, R. & Narayan, J. High-temperature superconductivity in boron-doped Q-carbon. ACS Nano 11, 5351–5357 (2017).
Gao, M., Yan, X.-W., Lu, Z.-Y. & Xiang, T. Strong-coupling superconductivity in LiB2C2 trilayer films. Phys. Rev. B 101, 094501 (2020).
Zhang, Y., Chen, J., Hao, J., Xu, M. & Li, Y. Conventional high-temperature superconductivity in σ-band driven metallized two-dimensional metal borocarbides. Phys. Rev. B 110, 064513 (2024).
Liu, H.-D., Fu, X.-P., Fu, Z.-G., Lu, H.-Y. & Zhang, P. High-Tc and three-gap two-dimensional superconductors with electronic and phononic topology: KB2C2. Phys. Rev. B 111, 184502 (2025).
Sano, W., Koretsune, T., Tadano, T., Akashi, R. & Arita, R. Effect of Van hove singularities on high-Tc superconductivity in H3S. Phys. Rev. B 93, 094525 (2016).
Gai, T.-T. et al. Van hove singularity induced phonon-mediated superconductivity above 77 K in hole-doped SrB3C3. Phys. Rev. B 105, 224514 (2022).
Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science 357, 71–75 (2017).
Huang, Y. et al. Ultrafast measurements of mode-specific deformation potentials of Bi2Te3 and Bi2Se3. Phys. Rev. X 13, 041050 (2023).
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).
Boschini, F., Zonno, M. & Damascelli, A. Time-resolved arpes studies of quantum materials. Rev. Mod. Phys. 96, 015003 (2024).
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Van De Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: A user guide. Calphad 26, 539–553 (2002).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 1419–1475 (2012).
Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).
Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).
Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 82, 3296 (1999).
Baroni, S., De Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).
Acknowledgements
We thank Xi Xu and Yue-chao Wang for useful discussions. The work is supported by the National Natural Science Foundation of China (Grant No: 22273002, 12404153) and the Fundamental Research Fund for the Central Universities (Grant No: FRF-TP-25-040). The calculations were done on Hefei advanced computing center, etc.
Author information
Authors and Affiliations
Contributions
Jiangping Hu, Hong Jiang and Yuhao Gu designed the project. Yuhao Gu performed the first-principles calculations. Yuhao Gu, Tao Xiang and Hong Jiang wrote the manuscript. All authors participated in discussions and provided comments on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Physics thanks Hongyan Lu and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Gu, Y., Hu, J., Jiang, H. et al. Optimal coloring and strain-enhanced superconductivity in LinBn+1Cn−1. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02495-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005-026-02495-w


