Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Optimal coloring and strain-enhanced superconductivity in LinBn+1Cn−1
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Optimal coloring and strain-enhanced superconductivity in LinBn+1Cn−1

  • Yuhao Gu  ORCID: orcid.org/0000-0001-7996-61981,
  • Jiangping Hu  ORCID: orcid.org/0000-0002-4837-77422,3,4,
  • Hong Jiang  ORCID: orcid.org/0000-0003-3187-20235 &
  • …
  • Tao Xiang  ORCID: orcid.org/0000-0001-5998-73382 

Communications Physics , Article number:  (2026) Cite this article

  • 350 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic structure
  • Structure of solids and liquids
  • Superconducting properties and materials

Abstract

Boron-rich lithium borocarbides are promising candidates for phonon-mediated high-temperature superconductors due to their metallic σ-bonding electrons. Here, we use the cluster expansion method to identify energetically stable configurations (colorings) of Li2B3C and Li3B4C2, which are characterized by a distinctive pattern of alternating B-B and B-C zigzag chains. Surprisingly, the optimal configuration of Li2B3C exhibits an extremely low superconducting transition temperature of Tc < 0.03 K, which is attributed to the suppression of deformation potentials near the Fermi level caused by the specific electron filling of B-B zigzag chains. However, the σ-bonding electrons at the Fermi level are highly sensitive to external strain or pressure. Specifically, applying a −5% compressive uniaxial strain can significantly enhance the electron-phonon coupling and the Eliashberg spectral function, boosting up Tc to 37 K. This work not only presents a strategy for achieving high critical temperatures in LinBn+1Cn+1 compounds, but also provides valuable insights into the complex interplay between electronic structure and superconducting interaction.

Similar content being viewed by others

Novel two dimensional B2C3 monolayer as a high theoretical capacity anode material for Li or Na ion batteries

Article Open access 07 May 2025

Anomalous electrons in a metallic kagome ferromagnet

Article Open access 06 March 2024

Signatures of a strange metal in a bosonic system

Article 12 January 2022

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The calculations were performed using the proprietary code VASP62, the open-source code ATAT65, the open-source code Wannier9067, the open-source code Quantum ESPRESSO69, and the open-source code EPW42. Wannier90 and EPW are freely released under the GNU General Public License (v2). ATAT and Quantum ESPRESSO are freely released under the Creative Commons Attribution 4.0 International License.

References

  1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. für. Phys. B Condens. Matter 64, 189–193 (1986).

    Google Scholar 

  2. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Google Scholar 

  3. Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Google Scholar 

  4. Gao, M., Lu, Z.-Y. & Xiang, T. Finding high-temperature superconductors by metallizing the σ-bonding electrons. Physics 44, 421–426 (2015).

    Google Scholar 

  5. An, J. M. & Pickett, W. E. Superconductivity of MgB2: Covalent Bonds Driven Metallic. Phys. Rev. Lett. 86, 4366–4369 (2001).

    Google Scholar 

  6. Gao, M., Lu, Z.-Y. & Xiang, T. Prediction of phonon-mediated high-temperature superconductivity in Li3B4C2. Phys. Rev. B 91, 045132 (2015).

    Google Scholar 

  7. Deng, S., Simon, A. & Köhler, J. Superconductivity in MgB2: a case study of the “flat Band–Steep band” scenario. J. Supercond. 16, 477–481 (2003).

    Google Scholar 

  8. Deng, S., Simon, A. & Köhler, J. A" flat/steep band" model for superconductivity. Inter. J. Mod. Phys. B 19, 29–36 (2005).

    Google Scholar 

  9. Lee, K.-W. & Pickett, W. E. Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93, 237003 (2004).

    Google Scholar 

  10. Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

    Google Scholar 

  11. Gu, Y., Wu, X., Jiang, K. & Hu, J. BaCuS2: a superconductor with moderate electron-electron correlation. Chin. Phys. Lett. 38, 017501 (2021).

    Google Scholar 

  12. Geng, N. et al. Conventional high-temperature superconductivity in metallic, covalently bonded, binary-guest c–b clathrates. J. Am. Chem. Soc. 145, 1696–1706 (2023).

    Google Scholar 

  13. Geng, N., Hilleke, K. P., Belli, F., Das, P. K. & Zurek, E. Superconductivity in CH4 and BH4- containing compounds derived from the high-pressure superhydrides. Mater. Today Phys. 44, 101443 (2024).

    Google Scholar 

  14. Zhang, J.-F. et al. Vital influence of hydrogen σ antibonding states on high-Tc superconductivity in SH3 under ultrahigh pressure. Phys. Rev. B 108, 094519 (2023).

    Google Scholar 

  15. Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656–4659 (2001).

    Google Scholar 

  16. Xi, X. X. Two-band superconductor magnesium diboride. Rep. Prog. Phys. 71, 116501 (2008).

    Google Scholar 

  17. Rosner, H., Kitaigorodsky, A. & Pickett, W. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett. 88, 127001 (2002).

    Google Scholar 

  18. Dewhurst, J., Sharma, S., Ambrosch-Draxl, C. & Johansson, B. First-principles calculation of superconductivity in hole-doped LiBC: Tc = 65K. Phys. Rev. B 68, 020504 (2003).

    Google Scholar 

  19. Miao, R. et al. First-principles study of superconductivity in the hole self-doped LiB1.1C0.9. J. Appl. Phys. 113, 133910 (2013).

    Google Scholar 

  20. Bazhirov, T., Sakai, Y., Saito, S. & Cohen, M. L. Electron-phonon coupling and superconductivity in Li -intercalated layered borocarbide compounds. Phys. Rev. B 89, 045136 (2014).

    Google Scholar 

  21. Li, Q.-Z., Yan, X.-W., Gao, M. & Wang, J. Electron-phonon coupling and superconductivity in LiB1+xC1−x. Eur. Phys. Lett. 122, 47001 (2018).

    Google Scholar 

  22. Quan, Y. & Pickett, W. E. Li2xBC3: Prediction of a second MgB2-class high-temperature superconductor. Phys. Rev. B 102, 144504 (2020).

    Google Scholar 

  23. Liu, H.-D., Wang, B.-T., Fu, Z.-G., Lu, H.-Y. & Zhang, P. Three-gap superconductivity with Tc above 80 K in hydrogenated 2D monolayer LiBC. Phys. Rev. Res. 6, 033241 (2024).

    Google Scholar 

  24. Yu, W. et al. Nontrivial d-electrons driven superconductivity of transition metal diborides. New J. Phys. 26, 063028 (2024).

  25. Pickett, W. E. Design for a room-temperature superconductor. J. Supercond. Nov. Mag. 19, 291–297 (2006).

    Google Scholar 

  26. Pickett, W. E. Room temperature superconductivity revolution: Foreshadowed by Victorians, enabled by millenials. arXiv preprint arXiv:1801.00165 (2017).

  27. Fogg, A., Chalker, P., Claridge, J., Darling, G. & Rosseinsky, M. LiBC electronic, vibrational, structural, and low-temperature chemical behavior of a layered material isoelectronic with MgB2. Phys. Rev. B 67, 245106 (2003).

    Google Scholar 

  28. Karimov, P. et al. Resonant inelastic soft X-ray scattering and electronic structure of LiBC. J. Phys. Condens. Matter 16, 5137 (2004).

    Google Scholar 

  29. Bharathi, A. et al. Synthesis and search for superconductivity in LiBC. Solid State Commun. 124, 423–428 (2002).

    Google Scholar 

  30. Fogg, A., Claridge, J., Darling, G. & Rosseinsky, M. Synthesis and characteristion of LixBC-hole doping does not induce superconductivity. Chem. Commun. 1348–1349 (2003).

  31. Souptel, D., Hossain, Z., Behr, G., Löser, W. & Geibel, C. Synthesis and physical properties of LiBC intermetallics. Solid State Commun. 125, 17–21 (2003).

    Google Scholar 

  32. Zhao, L., Klavins, P. & Liu, K. Synthesis and properties of hole-doped Li1−xBC. J. Appl. Phys. 93, 8653–8655 (2003).

    Google Scholar 

  33. Nakamori, Y. & Orimo, S. -i Synthesis and characterization of single phase LixBC (x= 0.5 and 1.0), using Li hydride as a starting material. J. Alloy. Compd. 370, L7–L9 (2004).

    Google Scholar 

  34. Fogg, A. M., Meldrum, J., Darling, G. R., Claridge, J. B. & Rosseinsky, M. J. Chemical control of electronic structure and superconductivity in layered borides and borocarbides: understanding the absence of superconductivity in LixBC. J. Am. Chem. Soc. 128, 10043–10053 (2006).

    Google Scholar 

  35. Burdett, J. K., Lee, S. & McLarnan, T. J. Coloring problem. J. Am. Chem. Soc. 107, 3083–3089 (1985).

    Google Scholar 

  36. Miller, G. J. The “coloring problem” in solids: How it affects structure, composition and properties. Euro. J. Inorg. Chem. 523–536 (1998).

  37. Sanchez, J. M., Ducastelle, F. & Gratias, D. Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Appl. 128, 334–350 (1984).

    Google Scholar 

  38. De Fontaine, D. Cluster approach to order-disorder transformations in alloys. Solid State Phys. 47, 33–176 (1994).

    Google Scholar 

  39. Zunger, A. First-principles statistical mechanics of semiconductor alloys and intermetallic compounds, 361–419 (Springer, 1994).

  40. Giustino, F., Cohen, M. L. & Louie, S. G. Electron-phonon interaction using wannier functions. Phys. Rev. B 76, 165108 (2007).

    Google Scholar 

  41. Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).

    Google Scholar 

  42. Lee, H. et al. Electron-phonon physics from first principles using the EPW code. Npj Comput. Mater. 9 (2023).

  43. Allen, P. B. Neutron spectroscopy of superconductors. Phys. Rev. B 6, 2577 (1972).

    Google Scholar 

  44. Allen, P. B. & Dynes, R. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975).

    Google Scholar 

  45. Khan, F. & Allen, P. Deformation potentials and electron-phonon scattering: Two new theorems. Phys. Rev. B 29, 3341 (1984).

    Google Scholar 

  46. Lee, K.-W. & Pickett, W. Crystal symmetry, electron-phonon coupling, and superconducting tendencies in Li2Pd3B and Li2Pt3B. Phys. Rev. B 72, 174505 (2005).

    Google Scholar 

  47. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Google Scholar 

  48. Hoffmann, R. Solids and surfaces: a chemist’s view of bonding in extended structures (John Wiley & Sons, 1991).

  49. Dronskowski, R. & Blöchl, P. E. Crystal orbital hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Google Scholar 

  50. Bhaumik, A., Sachan, R. & Narayan, J. High-temperature superconductivity in boron-doped Q-carbon. ACS Nano 11, 5351–5357 (2017).

    Google Scholar 

  51. Gao, M., Yan, X.-W., Lu, Z.-Y. & Xiang, T. Strong-coupling superconductivity in LiB2C2 trilayer films. Phys. Rev. B 101, 094501 (2020).

    Google Scholar 

  52. Zhang, Y., Chen, J., Hao, J., Xu, M. & Li, Y. Conventional high-temperature superconductivity in σ-band driven metallized two-dimensional metal borocarbides. Phys. Rev. B 110, 064513 (2024).

    Google Scholar 

  53. Liu, H.-D., Fu, X.-P., Fu, Z.-G., Lu, H.-Y. & Zhang, P. High-Tc and three-gap two-dimensional superconductors with electronic and phononic topology: KB2C2. Phys. Rev. B 111, 184502 (2025).

    Google Scholar 

  54. Sano, W., Koretsune, T., Tadano, T., Akashi, R. & Arita, R. Effect of Van hove singularities on high-Tc superconductivity in H3S. Phys. Rev. B 93, 094525 (2016).

    Google Scholar 

  55. Gai, T.-T. et al. Van hove singularity induced phonon-mediated superconductivity above 77 K in hole-doped SrB3C3. Phys. Rev. B 105, 224514 (2022).

    Google Scholar 

  56. Gerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science 357, 71–75 (2017).

    Google Scholar 

  57. Huang, Y. et al. Ultrafast measurements of mode-specific deformation potentials of Bi2Te3 and Bi2Se3. Phys. Rev. X 13, 041050 (2023).

    Google Scholar 

  58. Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    Google Scholar 

  59. Boschini, F., Zonno, M. & Damascelli, A. Time-resolved arpes studies of quantum materials. Rev. Mod. Phys. 96, 015003 (2024).

    Google Scholar 

  60. Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Google Scholar 

  61. Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).

    Google Scholar 

  62. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  63. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Google Scholar 

  64. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  65. Van De Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: A user guide. Calphad 26, 539–553 (2002).

    Google Scholar 

  66. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  67. Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Google Scholar 

  68. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 1419–1475 (2012).

  69. Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  70. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  71. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).

    Google Scholar 

  72. Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Google Scholar 

  73. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    Google Scholar 

  74. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 82, 3296 (1999).

    Google Scholar 

  75. Baroni, S., De Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Google Scholar 

Download references

Acknowledgements

We thank Xi Xu and Yue-chao Wang for useful discussions. The work is supported by the National Natural Science Foundation of China (Grant No: 22273002, 12404153) and the Fundamental Research Fund for the Central Universities (Grant No: FRF-TP-25-040). The calculations were done on Hefei advanced computing center, etc.

Author information

Authors and Affiliations

  1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China

    Yuhao Gu

  2. Institute of Physics, Chinese Academy of Sciences, Beijing, China

    Jiangping Hu & Tao Xiang

  3. Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China

    Jiangping Hu

  4. New Cornerstone Science Laboratory, Beijing, China

    Jiangping Hu

  5. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China

    Hong Jiang

Authors
  1. Yuhao Gu
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiangping Hu
    View author publications

    Search author on:PubMed Google Scholar

  3. Hong Jiang
    View author publications

    Search author on:PubMed Google Scholar

  4. Tao Xiang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Jiangping Hu, Hong Jiang and Yuhao Gu designed the project. Yuhao Gu performed the first-principles calculations. Yuhao Gu, Tao Xiang and Hong Jiang wrote the manuscript. All authors participated in discussions and provided comments on the manuscript.

Corresponding authors

Correspondence to Yuhao Gu, Jiangping Hu or Hong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Hongyan Lu and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary information for ”Optimal coloring and strain-enhanced superconductivity in LinBn+1Cn−1”

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Hu, J., Jiang, H. et al. Optimal coloring and strain-enhanced superconductivity in LinBn+1Cn−1. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02495-w

Download citation

  • Received: 19 May 2025

  • Accepted: 06 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02495-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing