Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Elastic heterogeneity governs anomalous dynamic scaling in a soft porous crystal
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 26 January 2026

Elastic heterogeneity governs anomalous dynamic scaling in a soft porous crystal

  • Kota Mitsumoto  ORCID: orcid.org/0000-0003-3938-43821 &
  • Kyohei Takae  ORCID: orcid.org/0000-0003-3180-59202 

Communications Physics , Article number:  (2026) Cite this article

  • 265 Accesses

  • 4 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Coarse-grained models
  • Phase transitions and critical phenomena
  • Scaling laws
  • Soft materials

Abstract

Nanoscale molecular transport governs mass diffusion and responsiveness in soft porous crystals, where guest adsorption induces host deformation and alters rigidity. Surface-mediated adsorption generates inhomogeneous adsorbate distributions, leading to spatial variations in stiffness—elastic heterogeneity—whose role in adsorption kinetics remains poorly understood. Here, we show that elastic heterogeneity governs adsorption kinetics, giving rise to size-dependent uptake, surface creasing, and anomalous dynamic scaling distinct from established scaling laws. Stress relaxation near corners accelerates adsorption, while on surfaces, creases emerge at flexible unadsorbed regions compressed between rigid adsorbed domains. The resulting lateral correlations of adsorbates exhibit a breakdown of scale invariance between global and local fluctuations. These findings provide a mechanistic foundation for controlling adsorption and deformation kinetics via elastic heterogeneity. Our work opens a route to engineering responsive materials, where mechanical feedback is harnessed to control cooperative molecular transport and drive macroscopic shape changes under external perturbations.

Similar content being viewed by others

Emergence of local scaling relations in adsorption energies on high-entropy alloys

Article Open access 27 April 2022

Substantially enhanced homogeneous plastic flow in hierarchically nanodomained amorphous alloys

Article Open access 20 June 2023

Adsorption space for microporous polymers with diverse adsorbate species

Article Open access 16 April 2021

Data availability

Input files to generate all of the figures are openly available at GitHub (https://github.com/kmitsumoto51/mof_kinetics). All other raw and processed data generated during this study are available from the corresponding author upon request.

Code availability

The computer codes used in this study are available from the corresponding author upon request.

References

  1. Mehrer, H.Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-controlled Processes (Springer Science & Business Media, 2007).

  2. Lee, D. S., Wingreen, N. S. & Brangwynne, C. P. Chromatin mechanics dictates subdiffusion and coarsening dynamics of embedded condensates. Nat. Phys. 17, 531–538 (2021).

    Google Scholar 

  3. Mukhopadhyay, A. & Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).

    Google Scholar 

  4. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Google Scholar 

  5. Alefeld, G. & Völkl, J. (eds.) Hydrogen in Metals I (Springer, 1978).

  6. Li, Y. & Tanaka, T. Phase transitions of gels. Annu. Rev. Mater. Res. 22, 243–277 (1992).

    Google Scholar 

  7. Doi, M. Gel dynamics. J. Phys. Soc. Jpn. 78, 052001 (2009).

    Google Scholar 

  8. Coussy, O.Mechanics and Physics of Porous Solids (John Wiley & Sons, 2010).

  9. Mitra, S., Sharma, V. K. & Mukhopadhyay, R. Diffusion of confined fluids in microporous zeolites and clay materials. Rep. Prog. Phys. 84, 066501 (2021).

    Google Scholar 

  10. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Google Scholar 

  11. Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    Google Scholar 

  12. Furukawa, H., Müller, U. & Yaghi, O. M. "Heterogeneity within order” in metal-organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    Google Scholar 

  13. Lim, D.-W. & Kitagawa, H. Proton transport in metal–organic frameworks. Chem. Rev. 120, 8416–8467 (2020).

    Google Scholar 

  14. Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 3099–3118 (2012).

    Google Scholar 

  15. Kärger, J., Ruthven, D. M. & Theodorou, D. N. Diffusion in Nanoporous Materials (Wiley-VCH, 2012).

  16. Coudert, F.-X. Recent advances in stimuli-responsive framework materials: Understanding their response and searching for materials with targeted behavior. Coord. Chem. Rev. 539, 216760 (2025).

    Google Scholar 

  17. Odoh, S. O., Cramer, C. J., Truhlar, D. G. & Gagliardi, L. Quantum-chemical characterization of the properties and reactivities of metal-organic frameworks. Chem. Rev. 115, 6051–6111 (2015).

    Google Scholar 

  18. Guyer, R. A. & Kim, H. A. Theoretical model for fluid-solid coupling in porous materials. Phys. Rev. E 91, 042406 (2015).

    Google Scholar 

  19. Jawahery, S. et al. Adsorbate-induced lattice deformation in IRMOF-74 series. Nat. Commun. 8, 13945 (2017).

    Google Scholar 

  20. Gor, G. Y., Huber, P. & Bernstein, N. Adsorption-induced deformation of nanoporous materials—a review. Appl. Phys. Rev. 4, 011303 (2017).

    Google Scholar 

  21. Rogge, S. M., Waroquier, M. & Van Speybroeck, V. Unraveling the thermodynamic criteria for size-dependent spontaneous phase separation in soft porous crystals. Nat. Commun. 10, 4842 (2019).

    Google Scholar 

  22. Kolesnikov, A. L., Budkov, Y. A. & Gor, G. Y. Models of adsorption-induced deformation: ordered materials and beyond. J. Phys.: Condens. Matter 34, 063002 (2022).

    Google Scholar 

  23. Schaper, L. & Schmid, R. Simulating the structural phase transitions of metal-organic frameworks with control over the volume of nanocrystallites. Commun. Chem. 6, 233 (2023).

    Google Scholar 

  24. Kolesnikov, A. L., Shkolin, A. V., Men’shchikov, I. E. & Gor, G. Y. Kinetics of adsorption-induced deformation of microporous carbons. Langmuir 40, 23806–23815 (2024).

    Google Scholar 

  25. Sakata, Y. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196 (2013).

    Google Scholar 

  26. Kärger, J. et al. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nat. Mater. 13, 333–343 (2014).

    Google Scholar 

  27. Cho, H. S. et al. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature 527, 503–507 (2015).

    Google Scholar 

  28. Sakaida, S. et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat. Chem. 8, 377–383 (2016).

    Google Scholar 

  29. Hosono, N., Terashima, A., Kusaka, S., Matsuda, R. & Kitagawa, S. Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nat. Chem. 11, 109–116 (2019).

    Google Scholar 

  30. Delen, G., Monai, M., Meirer, F. & Weckhuysen, B. M. In situ nanoscale infrared spectroscopy of water adsorption on nanoislands of surface-anchored metal-organic frameworks. Angew. Chem. Int. Ed. 60, 1620–1624 (2021).

    Google Scholar 

  31. Yamada, E. et al. Three-dimensional visualization of adsorption distribution in a single crystalline particle of a metal-organic framework. J. Am. Chem. Soc. 146, 9181–9190 (2024).

    Google Scholar 

  32. Watanabe, S. et al. Size-dependent guest-memory switching of the flexible and robust adsorption characteristics of layered metal-organic frameworks. Sci. Adv. 10, eadr1387 (2024).

    Google Scholar 

  33. Hanikel, N. et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    Google Scholar 

  34. Bavykina, A. et al. Metal–organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 120, 8468–8535 (2020).

    Google Scholar 

  35. Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Google Scholar 

  36. Horcajada, P. et al. Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    Google Scholar 

  37. Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotech. 14, 488–494 (2019).

    Google Scholar 

  38. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957).

    Google Scholar 

  39. Onuki, A. Phase Transition Dynamics (Cambridge University Press, 2002).

  40. Mitsumoto, K. & Takae, K. Elastic heterogeneity governs asymmetric adsorption-desorption in a soft porous crystal. Proc. Natl. Acad. Sci. 120, e2302561120 (2023).

    Google Scholar 

  41. Mitsumoto, K. & Takae, K. Adsorption superlattice stabilized by elastic interactions in a soft porous crystal. Phys. Rev. Res. 6, L012029 (2024).

    Google Scholar 

  42. Krug, J. & Spohn, H. Kinetic Roughening of Growing Surfaces. In Godrèche, C. (ed.) Solids Far From Equilibrium, 479–582 (Cambridge University Press, 1991).

  43. Barabási, A.-L. & Stanley, H. E.Fractal Concepts in Surface Growth (Cambridge University Press, 1995).

  44. Takeuchi, K. A. & Sano, M. Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012).

    Google Scholar 

  45. Tanaka, T. et al. Mechanical instability of gels at the phase transition. Nature 325, 796–798 (1987).

    Google Scholar 

  46. Matsuo, E. S. & Tanaka, T. Patterns in shrinking gels. Nature 358, 482–485 (1992).

    Google Scholar 

  47. Politi, P., Grenet, G., Marty, A., Ponchet, A. & Villain, J. Instabilities in crystal growth by atomic or molecular beams. Phys. Rep. 324, 271–404 (2000).

    Google Scholar 

  48. Aqua, J. N., Berbezier, I., Favre, L., Frisch, T. & Ronda, A. Growth and self-organization of SiGe nanostructures. Phys. Rep. 522, 59–189 (2013).

    Google Scholar 

  49. López, J. M., Rodríguez, M. A. & Cuerno, R. Superroughening versus intrinsic anomalous scaling of surfaces. Phys. Rev. E 56, 3993–3998 (1997).

    Google Scholar 

  50. Ramasco, J. J., López, J. M. & Rodríguez, M. A. Generic dynamic scaling in kinetic roughening. Phys. Rev. Lett. 84, 2199–2202 (2000).

    Google Scholar 

  51. López, J. M., Castro, M. & Gallego, R. Scaling of local slopes, conservation laws, and anomalous roughening in surface growth. Phys. Rev. Lett. 94, 166103 (2005).

    Google Scholar 

  52. Krause, S. et al. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 9, 1573 (2018).

    Google Scholar 

  53. Cogswell, D. A. & Bazant, M. Z. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano 6, 2215–2225 (2012).

    Google Scholar 

  54. Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A. & Mellot-Draznieks, C. Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. J. Am. Chem. Soc. 130, 14294–14302 (2008).

    Google Scholar 

  55. Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001).

    Google Scholar 

  56. Landau, D. P. & Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2014).

  57. Amar, J. G., Lam, P.-M. & Family, F. Groove instabilities in surface growth with diffusion. Phys. Rev. E 47, 3242–3245 (1993).

    Google Scholar 

  58. Edwards, S. F. & Wilkinson, D. R. The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A 381, 17–31 (1982).

    Google Scholar 

  59. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986).

    Google Scholar 

  60. Soriano, J. et al. Anomalous roughening of viscous fluid fronts in spontaneous imbibition. Phys. Rev. Lett. 95, 104501 (2005).

    Google Scholar 

  61. Herring, C. Surface Tension as a Motivation for Sintering. In Kingston, W. E. (ed.) The Physics of Powder Metallurgy, 143–179 (MacGraw-Hill, New-York, 1951).

  62. Mullins, W. W. Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957).

    Google Scholar 

  63. Wolf, D. E. & Villain, J. Growth with surface diffusion. EPL 13, 389–394 (1990).

    Google Scholar 

  64. Das Sarma, S. & Tamborenea, P. A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy. Phys. Rev. Lett. 66, 325–328 (1991).

    Google Scholar 

  65. Xia, H., Tang, G. & Lan, Y. Numerical analysis of long-range spatial correlations in surface growth. Phys. Rev. E 94, 062121 (2016).

    Google Scholar 

  66. Onuki, A. Theory of phase transition in polymer gels. Adv. Polym. Sci. 109, 63–121 (1993).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kazumasa A. Takeuchi and Tetsuo Yamaguchi for valuable discussions. This work was supported by Inamori Research Grants and the JSPS KAKENHI Grant No. JP24K00594, JP25H01978, and JP25K17354.

Author information

Authors and Affiliations

  1. Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan

    Kota Mitsumoto

  2. Graduate School of Engineering, Tottori University, Koyama-Cho Minami, Tottori, Tottori, 680-8552, Japan

    Kyohei Takae

Authors
  1. Kota Mitsumoto
    View author publications

    Search author on:PubMed Google Scholar

  2. Kyohei Takae
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.M. and K.T. conceived the project, K.M. performed numerical simulations and analysed the data, and K.M. and K.T. discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Kota Mitsumoto or Kyohei Takae.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsumoto, K., Takae, K. Elastic heterogeneity governs anomalous dynamic scaling in a soft porous crystal. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02508-8

Download citation

  • Received: 04 August 2025

  • Accepted: 13 January 2026

  • Published: 26 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02508-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing