Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metabolic roots of senescence: mechanisms and opportunities for intervention

Abstract

Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationships between metabolism and cellular senescence.
Fig. 2: NAD Metabolism and Cellular Senescence.
Fig. 3: Altered metabolic states of senescent cells.
Fig. 4: Lipid metabolism in senescent cells.
Fig. 5: Multiple roles for senescence in diabetes and its complications.

Similar content being viewed by others

References

  1. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell. Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15, 516–528 (1912).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sager, R., Tanaka, K., Lau, C. C., Ebina, Y. & Anisowicz, A. Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc. Natl Acad. Sci. USA 80, 7601–7605 (1984).

    Article  Google Scholar 

  5. Sager, R. Senescence as a mode of tumor suppression. Environ. Health Persp. 93, 59–62 (1991).

    Article  CAS  Google Scholar 

  6. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    CAS  Google Scholar 

  8. de Keizer, P. L., Laberge, R. M. & Campisi, J. p53: Pro-aging or pro-longevity? Aging 2, 377–379 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, D. E. et al. Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19, e13072 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell non-automous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cevenini, E., Monti, D. & Franceschi, C. Inflamm-ageing. Curr. Opin. Clin. Nutr. Metab. Care 16, 14–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. 69, 54–59 (2014).

    Article  Google Scholar 

  18. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimri, G. P. et al. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Molec. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davalos, A. R. et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gorgoulis, V. et al. Cellular Senescence: Defining a Path Forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  26. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Menon, R., Richardson, L. S. & Lappas, M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta 79, 40–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Menon, R. et al. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging 8, 216–230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chu, X., Wen, J. & Raju, R. P. Rapid senescence-like response after acute injury. Aging Cell 19, e13201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kortlever, R. M. & Bernards, R. Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle 5, 2697–2703 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarig, R. et al. Transient p53-mediated regenerative senescence in the injured heart. Circulation 139, 2491–2494 (2019).

    Article  PubMed  Google Scholar 

  35. Adams, P. D. Healing and hurting: molecular mechanisms, functions and pathologies of cellular senescence. Molec. Cell 36, 2–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Baker, D. J. & Sedivy, J. M. Probing the depths of cellular senescence. J. Cell Biol. 202, 11–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Disc. 16, 718–735 (2017).

    Article  CAS  Google Scholar 

  38. Tominaga, K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. Pathobiol. Aging Age Rel. Dis. 5, 27743 (2015).

    Article  Google Scholar 

  39. Wiley, C. D. & Campisi, J. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. Cell Metab. 23, 1013–1021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Wiley, C. D. et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 23, 303–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Miwa, S. et al. Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat. Commun. 5, 3837 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Velarde, M. C., Flynn, J. M., Day, N. U., Melov, S. & Campisi, J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging 4, 3–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Correia-Melo, C. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35, 724–742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perez, V. I. et al. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8, 73–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Diebold, L. & Chandel, N. S. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med. 100, 86–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morimoto, H. et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12, 774–786 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Juntilla, M. M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maryanovich, M. & Gross, A. A ROS rheostat for cell fate regulation. Trends Cell Biol. 23, 129–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ziegler, D. V. et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat. Commun. 12, 720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vasileiou, P. V. S. et al. Mitochondrial Homeostasis and Cellular Senescence. Cells 8, https://doi.org/10.3390/cells8070686 (2019).

  59. Chapman, J., Fielder, E. & Passos, J. F. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett. 593, 1566–1579 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Korolchuk, V. I., Miwa, S., Carroll, B. & von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 21, 7–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ziegler, D. V., Wiley, C. D. & Velarde, M. C. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Parrinello, S. et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5, 741–747 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakazawa, M. S., Keith, B. & Simon, M. C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Casciaro, F. et al. Prolonged hypoxia delays aging and preserves functionality of human amniotic fluid stem cells. Mech. Ageing Dev. 191, 111328 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Leontieva, O. V. et al. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc. Natl Acad. Sci. USA 109, 13314–13318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wiley, C. D. et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci. Rep. 8, 2410 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Coppe, J. P. et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 5, e9188 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. van Vliet, T. et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol. Cell 81, 2041–2052 e2046 (2021).

    Article  PubMed  CAS  Google Scholar 

  69. Ast, T. & Mootha, V. K. Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat. Metab. 1, 858–860 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Baik, A. H. & Jain, I. H. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol. 30, 516–536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Vliet, T., Casciaro, F. & Demaria, M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res. Rev. 67, 101267 (2021).

    Article  PubMed  CAS  Google Scholar 

  72. Parikh, P. et al. Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. Am. J. Respir. Cell Mol. Biol. 61, 51–60 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daher, A. et al. Clinical course of COVID-19 patients needing supplemental oxygen outside the intensive care unit. Sci. Rep. 11, 2256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. You, K. et al. Moderate hyperoxia induces senescence in developing human lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 317, L525–L536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hachmo, Y. et al. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging 12, 22445–22456 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dookun, E. et al. Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell 19, e13249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fleury, H. et al. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat. Commun. 10, 2556 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ohanna, M. et al. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev. 25, 1245–1261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nassour, J. et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat. Commun. 7, 10399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nacarelli, T. et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gomes, A. P. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, H. et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Baker, D. J. et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat. Cell Biol. 15, 96–102 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Andriani, G. A. et al. Whole chromosome instability induces senescence and promotes the SASP. Sci. Rep. 6, 35218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Simon, M. et al. LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metab. 29, 871–885 e875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mao, Z. et al. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc. Natl Acad. Sci. USA 109, 11800–11805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, C. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170–1179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hayakawa, T. et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS ONE 10, e0116480 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ota, H. et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25, 176–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Covarrubias, A. J. et al. Senescent cells promote tissue NAD(+) decline during ageing via the activation of CD38(+) macrophages. Nat. Metab. 2, 1265–1283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels. Nat. Metab. 2, 1284–1304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, S. M. et al. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 13, 525–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Jiang, P., Du, W., Mancuso, A., Wellen, K. E. & Yang, X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689–693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Blazer, S. et al. High glucose-induced replicative senescence: point of no return and effect of telomerase. Biochem. Biophys. Res. Commun. 296, 93–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Patel, C. et al. Arginase as a mediator of diabetic retinopathy. Front Immunol. 4, 173 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kitada, K. et al. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J. Diabetes Complications 28, 604–611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mortuza, R., Chen, S., Feng, B., Sen, S. & Chakrabarti, S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE 8, e54514 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, B. et al. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 35, 2237–2253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shosha, E. et al. Mechanisms of diabetes-induced endothelial cell senescence: role of Arginase 1. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19041215 (2018).

  106. Hayashi, T. et al. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc. Natl Acad. Sci. USA 103, 17018–17023 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jin, J. & Zhang, T. Effects of glucose restriction on replicative senescence of human diploid fibroblasts IMR-90. Cell. Physiol. Biochem. 31, 718–727 (2013).

    Article  PubMed  Google Scholar 

  108. Sohn, J. J. et al. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS ONE 7, e44156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, Y. et al. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to beta-cell function. Cell Death Dis. 10, 66 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Meyer, J. G. et al. Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE 13, e0208973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wu, J., Jin, Z., Zheng, H. & Yan, L. J. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab. Syndr. Obes. 9, 145–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, J. et al. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal 26, 110–121 (2014).

    Article  PubMed  CAS  Google Scholar 

  113. Liu, J. et al. Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am. J. Physiol. Cell Physiol. 308, C621–C630 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, C. Y., Abell, A. M., Moon, Y. S. & Kim, K. H. An advanced glycation end product (AGE)-receptor for AGEs (RAGE) axis restores adipogenic potential of senescent preadipocytes through modulation of p53 protein function. J. Biol. Chem. 287, 44498–44507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A. & Obeid, L. M. Role of ceramide in cellular senescence. J. Biol. Chem. 270, 30701–30708 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Venable, M. E. & Yin, X. Ceramide induces endothelial cell senescence. Cell Biochem. Funct. 27, 547–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, J. Y., Bielawska, A. E. & Obeid, L. M. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp. Cell. Res. 261, 303–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Chao, R., Khan, W. & Hannun, Y. A. Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine. J. Biol. Chem. 267, 23459–23462 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Trayssac, M., Hannun, Y. A. & Obeid, L. M. Role of sphingolipids in senescence: implication in aging and age-related diseases. J. Clin. Invest. 128, 2702–2712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Quijano, C. et al. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 11, 1383–1392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fafian-Labora, J. et al. FASN activity is important for the initial stages of the induction of senescence. Cell Death Dis. 10, 318 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Flor, A. C., Wolfgeher, D., Wu, D. & Kron, S. J. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov. 3, 17075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maeda, M., Scaglia, N. & Igal, R. A. Regulation of fatty acid synthesis and Delta9-desaturation in senescence of human fibroblasts. Life Sci. 84, 119–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Wiley, C. D. et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. https://doi.org/10.1016/j.cmet.2021.03.008 (2021).

  125. Wiley, C. D. et al. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight https://doi.org/10.1172/jci.insight.130056 (2019).

  126. Lizardo, D. Y., Lin, Y. L., Gokcumen, O. & Atilla-Gokcumen, G. E. Regulation of lipids is central to replicative senescence. Mol. Biosyst. 13, 498–509 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, W. et al. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD(+) recycling. Cell Metab. 29, 856–870 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Catalano, A., Rodilossi, S., Caprari, P., Coppola, V. & Procopio, A. 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J. 24, 170–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Martien, S. et al. Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts. Biochim. Biophys. Acta 1831, 1217–1227 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Han, J. H. et al. Selective COX-2 inhibitor, NS-398, inhibits the replicative senescence of cultured dermal fibroblasts. Mech. Ageing Dev. 125, 359–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Shibata, T. et al. 15-deoxy-delta 12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J. Biol. Chem. 277, 10459–10466 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Kang, C. & Elledge, S. J. How autophagy both activates and inhibits cellular senescence. Autophagy 12, 898–899 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kwon, Y., Kim, J. W., Jeoung, J. A., Kim, M. S. & Kang, C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol. Cells 40, 607–612 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE 6, e23367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rajendran, P. et al. Autophagy and senescence: a new insight in selected human diseases. J. Cell. Physiol. 234, 21485–21492 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, B. Y. et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Han, L. et al. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer Res. 80, 3383–3398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Patschan, S. et al. Mapping mechanisms and charting the time course of premature cell senescence and apoptosis: lysosomal dysfunction and ganglioside accumulation in endothelial cells. Am. J. Physiol. Renal Physiol. 294, F100–F109 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Killilea, D. W., Atamna, H., Liao, C. & Ames, B. N. Iron accumulation during cellular senescence in human fibroblasts in vitro. Antioxid Redox Signal 5, 507–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Masaldan, S. et al. Copper accumulation in senescent cells: interplay between copper transporters and impaired autophagy. Redox Biol. 16, 322–331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Winter, W. E., Bazydlo, L. A. & Harris, N. S. The molecular biology of human iron metabolism. Lab. Med. 45, 92–102 (2014).

    Article  PubMed  Google Scholar 

  147. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Masaldan, S. et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14, 100–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Festa, R. A. & Thiele, D. J. Copper: an essential metal in biology. Curr. Biol. 21, R877–R883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Matos, L., Gouveia, A. & Almeida, H. Copper ability to induce premature senescence in human fibroblasts. Age 34, 783–794 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Li, Y. et al. Copper induces cellular senescence in human glioblastoma multiforme cells through downregulation of Bmi-1. Oncol. Rep. 29, 1805–1810 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, Y. et al. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1(-/)(-) mice is correlated to increased cellular senescence. Redox Biol. 11, 30–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Oteiza, P. I. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med. 53, 1748–1759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kumar, J. et al. Zinc levels modulate lifespan through multiple longevity pathways in Caenorhabditis elegans. PLoS ONE 11, e0153513 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Salazar, G., Huang, J., Feresin, R. G., Zhao, Y. & Griendling, K. K. Zinc regulates Nox1 expression through a NF-kappaB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic. Biol. Med. 108, 225–235 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Malavolta, M. et al. Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. Exp. Gerontol. 99, 35–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Rudolf, E. & Cervinka, M. Stress responses of human dermal fibroblasts exposed to zinc pyrithione. Toxicol. Lett. 204, 164–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Aird, K. M. et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep. 3, 1252–1265 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Aird, K. M. et al. ATM couples replication stress and metabolic reprogramming during cellular senescence. Cell Rep. 11, 893–901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Buj, R. et al. Suppression of p16 induces mTORC1-mediated nucleotide metabolic reprogramming. Cell Rep. 28, 1971–1980 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Santinon, G. et al. dNTP metabolism links mechanical cues and YAP/TAZ to cell growth and oncogene-induced senescence. EMBO J. https://doi.org/10.15252/embj.201797780 (2018).

  162. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Alimirah, F. et al. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res. 80, 3606–3619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Wiley, C. D. et al. SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 28, 3329–3337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents Type 1 diabetes. Cell Metab. 29, 1045–1060 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Helman, A. et al. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 22, 412–420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Aguayo-Mazzucato, C. et al. Acceleration of beta cell aging determines diabetes and senolysis improves diabetes outcomes. Cell Metab. 30, 129–142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, S. R. et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl Res 213, 112–123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1563–F1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Crespo-Garcia, S. et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. https://doi.org/10.1016/j.cmet.2021.01.011 (2021).

  175. Heilbronn, L. K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 78, 361–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Fontana, L. et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell 17, e12746 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Mau, T., O'Brien, M., Ghosh, A. K., Miller, R. A. & Yung, R. Life-span extension drug interventions affected adipose tissue inflammation in aging. J. Gerontol. A Biol. Sci. Med. Sci. 75, 89–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Cui, J. et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS ONE 8, e69720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspace in adult mice. Cell Metab. 26, 539–546e535 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, S. Y. et al. Methionine restriction delays senescence and suppresses the senescence-associated secretory phenotype in the kidney through endogenous hydrogen sulfide. Cell Cycle 18, 1573–1587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Han, Y. M. et al. beta-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol. Cell 71, 1064–1078 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Harrison, D. E. et al. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell 18, e12898 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Chan, K. C. et al. Pleiotropic effects of acarbose on atherosclerosis development in rabbits are mediated via upregulating AMPK signals. Sci. Rep. 6, 38642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  CAS  Google Scholar 

  187. Jadhav, K. S., Dungan, C. M. & Williamson, D. L. Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech. Ageing Dev. 134, 548–559 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Fang, J. et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 17, e12765 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Chen, D. et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis. 7, e2441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kim, H. et al. Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell 20, e13317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Simons, J. The $10 billion pill. Fortune 147, 58–62 (2003).

    PubMed  Google Scholar 

  193. Assmus, B. et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res. 92, 1049–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Liu, S. et al. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci. Rep. 5, 17895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Efimova, E. V. et al. HMG-CoA reductase inhibition delays DNA repair and promotes senescence after tumor irradiation. Mol. Cancer Ther. 17, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Moon, S. H. et al. p53 Represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580e519 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Garcia-Valles, R. et al. Life-long spontaneous exercise does not prolong lifespan but improves health span in mice. Longev. Healthspan. 2, 14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Nilsson, M. I. et al. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS ONE 14, e0210863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Schafer, M. J. et al. Late-life time-restricted feeding and exercise differentially alter healthspan in obesity. Aging Cell 18, e12966 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rossman, M. J. et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am. J. Physiol. Heart. Circ. Physiol. 313, H890–H895 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Werner, C. et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120, 2438–2447 (2009).

    Article  PubMed  Google Scholar 

  204. Cherasse, Y. et al. The leptomeninges produce prostaglandin D2 involved in sleep regulation in mice. Front. Cell Neurosci. 12, 357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Urade, Y. & Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev. 15, 411–418 (2011).

    Article  PubMed  Google Scholar 

  206. Mander, B. A., Winer, J. R. & Walker, M. P. Sleep and human aging. Neuron 94, 19–36 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Roberts, S. B. et al. Healthy aging-nutrition matters: start early and screen often. Adv. Nutr. https://doi.org/10.1093/advances/nmab032 (2021).

  208. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.D.W. and J.C. conceived of the concepts described in this review. C.D.W. wrote the metabolic sections with assistance from J.C. J.C. wrote the introduction with assistance from C.D.W. Both authors wrote the conclusions section.

Corresponding author

Correspondence to Christopher D. Wiley.

Ethics declarations

Competing interests

J.C. is a scientific founder of Unity Biotechnology, which develops senolytic therapies. C.D.W. and J.C. hold patents for induction and detection of senolysis using metabolic targets.

Additional information

Peer review information Nature Metabolism thanks David Bernard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiley, C.D., Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 3, 1290–1301 (2021). https://doi.org/10.1038/s42255-021-00483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-021-00483-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing