Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-caloric sweetener effects on brain appetite regulation in individuals across varying body weights

Abstract

Sucralose, a widely used non-caloric sweetener, provides sweet taste without calories. Some studies suggest that non-caloric sweeteners stimulate appetite, possibly owing to the delivery of a sweet taste without the post-ingestive metabolic signals that normally communicate with the hypothalamus to suppress hunger. In a randomized crossover trial (ClinicalTrials.gov identifier: NCT02945475), 75 young adults (healthy weight, overweight or with obesity) consumed a drink containing sucralose, sweetness-matched sucrose or water. We show that acute consumption of sucralose versus sucrose stimulates hypothalamic blood flow (P < 0.018) and greater hunger responses (P < 0.001). Sucralose versus water also increases hypothalamic blood flow (P < 0.019) but produces no difference in hunger ratings. Sucrose, but not sucralose, increases peripheral glucose levels, which are associated with reductions in medial hypothalamic blood flow (P < 0.007). Sucralose, compared to sucrose and water, results in increased functional connections between the hypothalamus and brain regions involved in motivation and somatosensory processing. These findings suggest that non-caloric sweeteners could affect key mechanisms in the hypothalamus responsible for appetite regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Participant enrollment flowchart for the Randomized Crossover Brain Response to Sugar II trial and final analysis.
Fig. 2: Schematic of study design.
Fig. 3: Differential hypothalamic response to drink comparisons.
Fig. 4: Difference in hypothalamic response to drinks by weight status.
Fig. 5: Differential functional connectivity from hypothalamus seed region after sucralose ingestion relative to sucrose and water.
Fig. 6: Visual display of changes in hypothalamic, peripheral glucose, insulin, GLP-1 and hunger responses over time.
Fig. 7: Associations between peripheral glucose, hunger and changes in medial hypothalamic blood flow.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author (K.A.P.) on reasonable request, and all brain imaging data are available in the Open Science Framework repository (https://osf.io/tuw93). Access to individual-level data is restricted owing to ethical and legal concerns. However, data may be shared for scientific collaborations upon request, contingent on the execution of appropriate data-sharing agreements. All requests will undergo review and approval by investigators, and will be in compliance with relevant local and national regulations and data-sharing policies. To request access, please contact the corresponding author. An initial response to requests will be provided within four weeks. Source data are provided with this paper.

Code availability

Computer codes used for data analyses are published in the following Open Science Framework repository: https://osf.io/tuw93/.

References

  1. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief 288, 1–8 (2017).

    Google Scholar 

  2. Hu, F. B. & Malik, V. S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol. Behav. 100, 47–54 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malik, V. S., Pan, A., Willett, W. C. & Hu, F. B. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 98, 1084–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bray, G. A. & Popkin, B. M. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care 37, 950–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aguayo-Guerrero, J. A., Méndez-García, L. A., Solleiro-Villavicencio, H., Viurcos-Sanabria, R. & Escobedo, G. Sucralose: from sweet success to metabolic controversies—unraveling the global health implications of a pervasive non-caloric artificial sweetener. Life 14, 323 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrade, L., Lee, K. M., Sylvetsky, A. C. & Kirkpatrick, S. I. Low-calorie sweeteners and human health: a rapid review of systematic reviews. Nutr. Rev. 79, 1145–1164 (2021).

    Article  PubMed  Google Scholar 

  7. Azad, M. B. et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ 189, E929–E939 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liauchonak, I., Qorri, B., Dawoud, F., Riat, Y. & Szewczuk, M. R. Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients 11, 644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sylvetsky, A. C. & Rother, K. I. Nonnutritive sweeteners in weight management and chronic disease: a review. Obesity (Silver Spring) 26, 635–640 (2018).

    Article  PubMed  Google Scholar 

  10. Toews, I., Lohner, S., de Gaudry, D. K., Sommer, H. & Meerpohl, J. J. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. Brit. Med. J. 364, k4718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van Opstal, A. et al. Dietary sugars and non-caloric sweeteners elicit different homeostatic and hedonic responses in the brain. Nutrition 60, 80–86 (2019).

    Article  PubMed  Google Scholar 

  12. Tobiassen, P. A. S. & Køster-Rasmussen, R. Substitution of sugar-sweetened beverages with non-caloric alternatives and weight change: a systematic review of randomized trials and meta-analysis. Obesity Rev. 25, e13652 (2024).

    Article  CAS  Google Scholar 

  13. Wilk, K., Korytek, W., Pelczyńska, M., Moszak, M. & Bogdański, P. The effect of artificial sweeteners use on sweet taste perception and weight loss efficacy: a review. Nutrients 14, 1261 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Higgins, K. A. & Mattes, R. D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J Clin. Nutr. 109, 1288–1301 (2019).

    Article  PubMed  Google Scholar 

  15. Laviada-Molina, H. et al. Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: systematic review and meta-analysis. Obesity Rev. 21, e13020 (2020).

    Article  Google Scholar 

  16. Swithers, S. E., Sample, C. H. & Davidson, T. L. Adverse effects of high-intensity sweeteners on energy intake and weight control in male and obesity-prone female rats. Behav. Neurosci. 127, 262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smeets, P. A., de Graaf, C., Stafleu, A., van Osch, M. J. & van der Grond, J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am. J. Clin. Nutr. 82, 1011–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Van Opstal, A. M. et al. Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr. Neurosci. 24, 395–405 (2021).

    Article  PubMed  Google Scholar 

  19. Frank, G. K. et al. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage 39, 1559–1569 (2008).

    Article  PubMed  Google Scholar 

  20. Smeets, P. A., Weijzen, P., de Graaf, C. & Viergever, M. A. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. Neuroimage 54, 1367–1374 (2011).

    Article  PubMed  Google Scholar 

  21. Zhang, X. et al. Impacts of acute sucralose and glucose on brain activity during food decisions in humans. Nutrients 12, 3283 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sylvetsky, A. C. & Rother, K. I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 164, 446–450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yunker, A. G. et al. Obesity and sex-related associations with differential effects of sucralose vs sucrose on appetite and reward processing: a randomized crossover trial. JAMA Netw. Open 4, e2126313 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schiffman, S. S. & Rother, K. I. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. J. Toxicol. Environ. Health B Crit. Rev. 16, 399–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roger, C. et al. The role of the human hypothalamus in food intake networks: an MRI perspective. Front. Nutr. 8, 760914 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Osada, T. et al. Functional subdivisions of the hypothalamus using areal parcellation and their signal changes related to glucose metabolism. Neuroimage 162, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Wright, H. et al. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity. Eur. J. Neurosci. 43, 1181–1189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kullmann, S. et al. The effect of hunger state on hypothalamic functional connectivity in response to food cues. Hum. Brain Mapp. 44, 418–428 (2023).

    Article  PubMed  Google Scholar 

  29. Matsuda, M. et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 48, 1801–1806 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Gao, J.-H., Liu, H.-L. & Fox, P. T. The temporal response of the brain after eating revealed by functional MRI. Nature 405, 1058–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Smeets, P. A., de Graaf, C., Stafleu, A., van Osch, M. J. & van der Grond, J. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage 24, 363–368 (2005).

    Article  PubMed  Google Scholar 

  32. Smeets, P. A. et al. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am. J. Physiol. Endocrinol. Metabol. 293, E754–E758 (2007).

    Article  CAS  Google Scholar 

  33. Page, K. A. et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 309, 63–70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo, S. et al. Resting state hypothalamic response to glucose predicts glucose-induced attenuation in the ventral striatal response to food cues. Appetite 116, 464–470 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Page, K. A. et al. Children exposed to maternal obesity or gestational diabetes mellitus during early fetal development have hypothalamic alterations that predict future weight gain. Diabetes care 42, 1473–1480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Page, K. A. et al. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J. Clin. Invest. 121, 4161–4169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Page, K. A. et al. Small decrements in systemic glucose provoke increases in hypothalamic blood flow prior to the release of counterregulatory hormones. Diabetes 58, 448–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neudorfer, C. et al. A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci. Data 7, 305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heni, M. et al. Insulin action in the hypothalamus increases second-phase insulin secretion in humans. Neuroendocrinology 110, 929–937 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Hummel, J. et al. Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. Nat. Metab. 5, 1475–1482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swithers, S. E., Baker, C. R. & Davidson, T. General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats. Behav. Neurosci. 123, 772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohno, D. et al. Sweet taste receptor serves to activate glucose-and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Front. Neurosci. 10, 502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kohno, D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. J. Physiol. Sci. 67, 459–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren, X., Zhou, L., Terwilliger, R., Newton, S. & De Araujo, I. E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3, 666 (2009).

    Article  Google Scholar 

  45. Harrold, J. A. et al. Effects of non-nutritive sweetened beverages versus water after a 12-week weight-loss program: a randomized controlled trial. Obesity (Silver Spring) 31, 1996–2008 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Chao, A. M. et al. Sex/gender differences in neural correlates of food stimuli: a systematic review of functional neuroimaging studies. Obesity Rev. 18, 687–699 (2017).

    Article  Google Scholar 

  47. Yeung, A. Sex differences in brain responses to food stimuli: a meta-analysis on neuroimaging studies. Obesity Rev. 19, 1110–1115 (2018).

    Article  CAS  Google Scholar 

  48. Kullmann, S. et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care 38, 1044–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Hayes, M. R., Skibicka, K. P., Bence, K. K. & Grill, H. J. Dorsal hindbrain 5′-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology 150, 2175–2182 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz, M. W. et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503, 59–66 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hetherington, A. & Ranson, S. Hypothalamic lesions and adiposity in the rat. Anat. Rec. 78, 149–172 (1940).

    Article  Google Scholar 

  54. Apps, M. A., Rushworth, M. F. & Chang, S. W. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90, 692–707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, J. et al. Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Hum. Brain Mapp. 36, 238–257 (2015).

    Article  PubMed  Google Scholar 

  56. Dalenberg, J. R. et al. Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metab. 31, 493–502.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sylvetsky, A. C. et al. Consumption of low-calorie sweeteners among children and adults in the United States. J. Acad. Nutr. Diet. 117, 441–448.e442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martin, C. B., Herrick, K. A., Sarafrazi, N. & Ogden, C. L. Attempts to lose weight among adults in the United States, 2013–2016. NCHS Data Brief 313, 1–8 (2018).

    Google Scholar 

  59. Yunker, A. G., Patel, R. & Page, K. A. Effects of non-nutritive sweeteners on sweet taste processing and neuroendocrine regulation of eating behavior. Current Nutr. Rep. 9, 278–289 (2020).

    Article  CAS  Google Scholar 

  60. Contreras-Chavez, G. G., Estrada, J. A. & Contreras, I. Changes in appetite regulation-related signaling pathways in the brain of mice supplemented with non-nutritive sweeteners. J. Mol. Neurosci. 71, 1144–1155 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Page, K., Luo, S. & Dorton, H. Neural mechanisms for appetitive response for high reward foods. Open Science Framework https://doi.org/10.17605/OSF.IO/E7B9F (2020).

  62. Dye, L. & Blundell, J. Menstrual cycle and appetite control: implications for weight regulation. Hum. Reprod. 12, 1142–1151 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Krishnan, S., Tryon, R. R., Horn, W. F., Welch, L. & Keim, N. L. Estradiol, SHBG and leptin interplay with food craving and intake across the menstrual cycle. Physiol. Behav. 165, 304–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462–1470 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Aguirre, G. K., Detre, J. A. & Wang, J. Perfusion fMRI for functional neuroimaging. Int. Rev. Neurobiol. 66, 213–236 (2005).

    Article  PubMed  Google Scholar 

  66. Detre, J. A., Wang, J., Wang, Z. & Rao, H. Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Current Opin. Neurol. 22, 348–355 (2009).

    Article  Google Scholar 

  67. Wang, Y. et al. Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 54, 1188–1195 (2011).

    Article  PubMed  Google Scholar 

  68. Baroncini, M. et al. MRI atlas of the human hypothalamus. Neuroimage 59, 168–180 (2012).

    Article  PubMed  Google Scholar 

  69. Kullmann, S. et al. Resting-state functional connectivity of the human hypothalamus. Hum. Brain Mapp. 35, 6088–6096 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hoang, H. et al. Low-calorie diet-induced weight loss is associated with altered brain connectivity and food desire in obesity. Obesity (Silver Spring) 32, 1362–1372 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Article  PubMed  Google Scholar 

  72. Nieto-Castanon, A. & Whitfield-Gabrieli, S. CONN functional connectivity toolbox (RRID: SCR_009550), release 21 (Hilbert Press, 2021).

  73. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical parametric mapping: the analysis of functional brain images (Elsevier, 2011).

  74. Nieto-Castanon, A. Handbook of functional connectivity magnetic resonance imaging methods in CONN (Hilbert Press, 2020).

  75. Worsley, K. J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Chumbley, J., Worsley, K., Flandin, G. & Friston, K. Topological FDR for neuroimaging. Neuroimage 49, 3057–3064 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Flint, A., Raben, A., Blundell, J. & Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obesity 24, 38–48 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases (R01DK102794 to K.A.P, F31DK137584 to S.P.C). A Research Electronic Data Capture, REDCap, database was used for this study, which is supported by the Southern California Clinical and Translational Science Institute through NIH grant UL1TR001855. We thank the volunteers who participated in this study and the staff at the Dornsife Cognitive Neuroimaging Center and Diabetes and Obesity Research Institute of the University of Southern California. A. Romero, E. Trigo, R. Maniego, H. Dorton, E. Jahng, B. Ge, L. N. Overholtzer, J. Hislop, M. Erdstein and P. Dave (all from University of Southern California) assisted with study visits and recruiting volunteers.

Author information

Authors and Affiliations

Authors

Contributions

K.A.P. conceived and designed the study. All authors were involved with the acquisition, analysis or interpretation of data. S.P.C. and K.A.P. drafted the manuscript; S.P.C., K.A.P., S.K., R.V., K.J., J.R.M., A.H.X. and A.G.Y. critically reviewed the manuscript for important intellectual content. S.P.C. performed statistical analysis. S.P.C., H.L. and B.A. visualized the project. H.L., A.G.Y., B.A., K.J. and R.V. provided administrative, technical or material support. K.A.P. obtained funding and supervised the research.

Corresponding author

Correspondence to Kathleen A. Page.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Jean Nakhle and Ashley Castellanos-Jankiewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Visual Display of Hypothalamic ROI.

Hypothalamic Region of interest (ROIs) and corresponding coordinates. (a) Lateral hypothalamus (green), (b) Medial hypothalamus (blue), (c) Neudorfer (yellow). The images are displayed in neurological convention.

Supplementary information

Supplementary Information

Supplementary Tables 1–10; Supplementary File 1, Study Protocol, Statistical Analysis Plan

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 6

Statistical source data

Source Data Fig. 7

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravartti, S.P., Jann, K., Veit, R. et al. Non-caloric sweetener effects on brain appetite regulation in individuals across varying body weights. Nat Metab 7, 574–585 (2025). https://doi.org/10.1038/s42255-025-01227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42255-025-01227-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing