Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A systematic review of the impact of food security governance measures as simulated in modelling studies

Abstract

To effectively address food security, we need tools that assess governance measures (for example, strategic storage reserves, cash transfers or trade regulations) ex ante. Simulation models can estimate the impact of such measures via scenarios with differently governed food systems. On the basis of a systematic review of 110 simulation studies published over 2000–2021, we examined how food security governance has been represented, and identified needs for future simulation model development. We found that studies commonly used agent-based, system dynamics, and computable general equilibrium models; tended to be production, trade or consumption centric; assessed the impact of a wide variety of mostly treasure- or authority-based measures; and applied diverse food security indicators, mostly of access or availability. We also identified blind spots (for example, simulation of nodal measures) and proposed how to address these blind spots (for example, telecoupling) and to make food security governance simulation studies fit for meta-analyses (for example, harmonizing food security indicators for comparison).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram illustrating the identification and screening process.
Fig. 2: Domains, scales, geographic focus and food system representation of different types of simulation models.
Fig. 3: Food value chain coverage by food security governance simulation studies.
Fig. 4: Social and spatial targeting of governance measures.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the FoodSecGovSim2 Code Repository on github (https://github.com/ateeuw/FoodSecGovSim2) and on the Data Repository on Dataverse (https://doi.org/10.7910/DVN/Q9WXC2)107. Source data are provided with this paper.

Code availability

The code used to generate the results described in this review can be found in the FoodSecGovSim2 Code Repository on github (https://github.com/ateeuw/FoodSecGovSim2).

References

  1. FAO, IFAD, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding against economic slowdowns and downturns. (2019) Rome, FAO.Licence: CC BY-NC-SA 3.0 IGO.

  2. Swinnen, J. in COVID-19 and Global Food Security. Part One: Food Security, Poverty, and Inequality (eds. Swinnen, J. and McDermott, J.) Ch. 3, 20–22 (International Food Policy Research Institute, 2020).

  3. Ghosh, J. The unnatural coupling: food and global finance. J. Agrar. Chang. 10, 72–86 (2010).

    Article  Google Scholar 

  4. Rosset, P. Agrofuels, food sovereignty, and the contemporary food crisis. Bulletin of Science,Technology & Society 29, 189–193 (2009).

    Article  Google Scholar 

  5. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Candel, J. J. L. Food security governance: a systematic literature review. Food Secur. 6, 585–601 (2014).

    Article  Google Scholar 

  7. Delaney, A. et al. Governance of food systems across scales in times of social-ecological change: a review of indicators. Food Secur. 10, 287–310 (2018).

    Article  Google Scholar 

  8. Reidsma, P., Janssen, S., Jansen, J. & van Ittersum, M. K. On the development and use of farm models for policy impact assessment in the European Union—a review. Agric. Syst. 159, 111–125 (2018).

    Article  Google Scholar 

  9. Voinov, A. et al. Tools and methods in participatory modeling: selecting the right tool for the job. Environ. Model. Softw. 109, 232–255 (2018).

    Article  Google Scholar 

  10. Müller, B. et al. Modelling food security: bridging the gap between the micro and the macro scale. Glob. Environ. Chang 63, 1–16 (2020).

    Article  Google Scholar 

  11. Hood, C. C. & Margetts, H. Z. The Tools of Government in the Digital Age (Macmillan International Higher Education, 2007).

  12. Grover, A., Lall, S. V. & Maloney, W. F. in Place, Productivity, and Prosperity (eds. Grover, A., Lall, S. V. & Maloney, W. F.) 1–9 (International Bank for Reconstruction and Development/The World Bank, 2022).

  13. Demeke, M., Guendalina, P. & Maetz, M. Country Responses to the Food Security Crisis: Nature and Preliminary Implications of the Policies Pursued https://www.fao.org/publications/card/en/c/506db788-bb64-4715-a211-1448442ed637/ (2009).

  14. Koh, K., Reno, R. & Hyder, A. Examining disparities in food accessibility among households in Columbus, Ohio: an agent-based model. Food Secur. 11, 317–331 (2019).

    Article  Google Scholar 

  15. Cororaton, C. B. & Yu, K. D. S. Assessing the poverty and distributional impact of alternative rice policies in the Philippines. DLSU Bus. Econ. Rev. 28, 169–182 (2019).

    Google Scholar 

  16. Dos Santos, V. et al. Effects of alternative policies on income redistribution: evidence from Brazil. Dev. Policy Rev. 27, 601–616 (2009).

    Article  Google Scholar 

  17. Montaud, J.-M. Agricultural drought impacts on crops sector and adaptation options in Mali: a macroeconomic computable general equilibrium analysis. Environ. Dev. Econ. 24, 506–528 (2019).

    Article  Google Scholar 

  18. Williams, T. G. G., Guikema, S. D. D., Brown, D. G. G. & Agrawal, A. Resilience and equity: quantifying the distributional effects of resilience-enhancing strategies in a smallholder agricultural system. Agric. Syst. 182, 1–14 (2020).

    Article  Google Scholar 

  19. Gunda, T., Bazuin, J. T. T., Nay, J. & Yeung, K. L. L. Impact of seasonal forecast use on agricultural income in a system with varying crop costs and returns: an empirically-grounded simulation. Environ. Res. Lett. 12, 1–13 (2017).

    Article  Google Scholar 

  20. Abel, K. C. & Faust, K. M. Modeling complex human systems: an adaptable framework of urban food deserts. Sustain. Cities Soc. 52, 1–13 (2020).

    Article  Google Scholar 

  21. Widener, M. J., Metcalf, S. S. & Bar-Yam, B.-Y. Agent-based modeling of policies to improve urban food access for low-income populations. Appl. Geogr. 40, 1–10 (2013).

    Article  Google Scholar 

  22. Mittal, A., Oran Gibson, N., Krejci, C. C. & Marusak, A. A. Crowd-shipping for urban food rescue logistics. Int. J. Phys. Distrib. Logist. Manag. 51, 486–507 (2021).

    Article  Google Scholar 

  23. Marivoet, W., Ulimwengu, J. & Sedano, F. Spatial typology for targeted food and nutrition security interventions. World Dev. 120, 62–75 (2019).

    Article  Google Scholar 

  24. Findiastuti, W., Singgih, M. L. & Anityasari, M. Indonesian sustainable food-availability policy assessment using system dynamics: a solution for complexities. Cogent Food Agric. 4, 1–21 (2018).

    Google Scholar 

  25. Lusiana, B., van Noordwijk, M. & Cadisch, G. Land sparing or sharing? Exploring livestock fodder options in combination with land use zoning and consequences for livelihoods and net carbon stocks using the FALLOW model. Agric. Ecosyst. Environ. 159, 145–160 (2012).

    Article  Google Scholar 

  26. Gallagher, P. W. The regional effects of a biomass fuel industry on US agriculture. Energy Policy 69, 598–609 (2014).

    Article  Google Scholar 

  27. Godfray, H. C. J. & Robinson, S. Contrasting approaches to projecting long-run global food security. Oxford Rev. Econ. Policy 31, 26–44 (2015).

    Article  Google Scholar 

  28. Fellmann, T. et al. Harvest failures, temporary export restrictions and global food security: the example of limited grain exports from Russia, Ukraine and Kazakhstan. Food Secur. 6, 727–742 (2014).

    Article  Google Scholar 

  29. Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 33, 58–69 (2018).

    Article  Google Scholar 

  30. Reardon, T. The hidden middle: the quiet revolution in the midstream of agrifood value chains in developing countries. Oxford Rev. Econ. Policy 31, 45–63 (2015).

    Article  Google Scholar 

  31. Boulanger, P., Dudu, H., Ferrari, E., Mainar-Causapé, A. J. & Ramos, M. P. Effectiveness of fertilizer policy reforms to enhance food security in Kenya: a macro–micro simulation analysis. Appl. Econ. https://doi.org/10.1080/00036846.2020.1808180 (2020).

    Article  Google Scholar 

  32. Veldhuizen, L. J. et al. The Missing Middle: connected action on agriculture and nutrition across global, national and local levels to achieve Sustainable Development Goal 2. Glob. Food Sec. 24, 100336 (2020).

    Article  Google Scholar 

  33. Utomo, D. S., Onggo, B. S. & Eldridge, S. Applications of agent-based modelling and simulation in the agri-food supply chains. Eur. J. Oper. Res. 269, 794–805 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  34. van Wijk, M. T. From global economic modelling to household level analyses of food security and sustainability: how big is the gap and can we bridge it? Food Policy 49, 378–388 (2014).

    Article  Google Scholar 

  35. Kunimitsu, Y., Sakurai, G. & Iizumi, T. Systemic risk in global agricultural markets and trade liberalization under climate change: synchronized crop-yield change and agricultural price volatility. Sustainability 12, 1–17 (2020).

    Article  Google Scholar 

  36. Wossen, T., Berger, T., Swamikannu, N. & Ramilan, T. Climate variability, consumption risk and poverty in semi-arid Northern Ghana: adaptation options for poor farm households. Environ. Dev. 12, 2–15 (2014).

    Article  Google Scholar 

  37. Sulser, T. B., Nestorova, B., Rosegrant, M. W. & van Rheenen, T. The future role of agriculture in the Arab region’s food security. Food Secur. 3, S23–S48 (2011).

    Article  Google Scholar 

  38. Arndt, C., Benfica, R. & Thurlow, J. Gender implications of biofuels expansion in Africa: the case of Mozambique. World Dev. 39, 1649–1662 (2011).

    Article  Google Scholar 

  39. Ha, P. Van et al. Rice production, trade and the poor: regional effects of rice export policy on households in Vietnam. J. Agric. Econ. 66, 280–307 (2015).

    Article  Google Scholar 

  40. He, J. et al. A counterfactual scenario simulation approach for assessing the impact of farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Appl. Geogr. 37, 127–138 (2013).

    Article  Google Scholar 

  41. Yao, G. & Xie, H. Rural spatial restructuring in ecologically fragile mountainous areas of southern China: a case study of Changgang Town, Jiangxi Province. J. Rural Stud. 47, 435–448 (2016).

    Article  Google Scholar 

  42. Zhang, H., Liao, X. & Zhai, T. Evaluation of ecosystem service based on scenario simulation of land use in Yunnan Province. Phys. Chem. Earth. 104, 58–65 (2018).

    Article  ADS  Google Scholar 

  43. Sankaranarayanan, S. et al. What are the domestic and regional impacts from Ethiopia’s policy on the export ban of teff? Front. Sustain. Food Syst. 4, 1–14 (2020).

    Article  Google Scholar 

  44. Breisinger, C., Diao, X., Thurlow, J. & Al Hassan, R. M. Potential impacts of a green revolution in Africa—the case of Ghana. J. Int. Dev. 23, 82–102 (2011).

    Article  Google Scholar 

  45. Reiner, G., Gold, S. & Hahn, R. Wealth and health at the base of the pyramid: modelling trade-offs and complementarities for fast moving dairy product case. Int. J. Prod. Econ. 170, 413–421 (2015).

    Article  Google Scholar 

  46. Gokalp, E. System dynamics modelling of bread waste problem. Pamukkale Univ. J. Eng. Sci. 26, 831–837 (2020).

    Article  Google Scholar 

  47. Buisman, M. E., Haijema, R. & Bloemhof-Ruwaard, J. M. Discounting and dynamic shelf life to reduce fresh food waste at retailers. Int. J. Prod. Econ. 209, 274–284 (2019).

    Article  Google Scholar 

  48. Teimoury, E., Nedaei, H., Ansari, S. & Sabbaghi, M. A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013).

    Article  Google Scholar 

  49. Chakraborty, S. & Sarmah, S. P. S. P. Managing supply and transportation disruptions: a case of Indian fair price shops. Kybernetes 49, 2773–2797 (2019).

    Article  Google Scholar 

  50. Laborte, A. G. et al. Farmers’ welfare, food production and the environment: a model-based assessment of the effects of new technologies in the northern Philippines. NJAS-Wagen. J. Life Sci. 56, 345–373 (2009).

    Article  Google Scholar 

  51. Argüello, R. & Valderrama-Gonzalez, D. Sectoral and poverty impacts of agricultural policy adjustments in Colombia. Agric. Econ. 46, 259–280 (2015).

    Article  Google Scholar 

  52. Radwan, T. M., Blackburn, G. A., Whyatt, J. D. & Atkinson, P. M. Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt. Remote Sens. 11, 1–20 (2019).

    Article  Google Scholar 

  53. Kleinwechter, U. & Grethe, H. Trade policy impacts under alternative land market regimes in rural China. China Econ. Rev. 23, 1071–1089 (2012).

    Article  Google Scholar 

  54. Jafari, Y., Britz, W. & Beckman, J. The impacts to food consumers of a Transatlantic Trade and Investment Partnership. Bio-based Appl. Econ. 7, 139–160 (2018).

    Google Scholar 

  55. Yu, T.-H. E., Tokgoz, S., Wailes, E. & Chavez, E. A quantitative analysis of trade policy responses to higher world agricultural commodity prices. Food Policy 36, 545–561 (2011).

    Article  Google Scholar 

  56. Anderson, K., Huang, J. K. & Ianchovichina, E. Will China’s WTO accession worsen farm household incomes? Chin. Econ. Rev. 15, 443–456 (2004).

    Article  Google Scholar 

  57. Tanaka, T. & Hosoe, N. Does agricultural trade liberalization increase risks of supply-side uncertainty?: effects of productivity shocks and export restrictions on welfare and food supply in Japan. Food Policy 36, 368–377 (2011).

    Article  Google Scholar 

  58. Yang, F., Bekkers, E., Brockmeier, M. & Francois, J. Food price pass-through and the role of domestic margin services. J. Agric. Econ. 66, 796–811 (2015).

    Article  Google Scholar 

  59. Djanibekov, N., Sommer, R. & Djanibekov, U. Evaluation of effects of cotton policy changes on land and water use in Uzbekistan: application of a bio-economic farm model at the level of a water users association. Agric. Syst. 118, 1–13 (2013).

    Article  Google Scholar 

  60. Cobiac, L. et al. Accounting for consumers’ preferences in the analysis of dietary recommendations. Eur. J. Clin. Nutr. 73, 1033–1039 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Qian, J., Ito, S. & Zhao, Z. The effect of price support policies on food security and farmers’ income in China. Aust. J. Agric. Resour. Econ. 64, 1328–1349 (2020).

    Article  Google Scholar 

  62. Larson, D. F., Lampietti, J., Gouel, C., Cafiero, C. & Roberts, J. Food security and storage in the Middle East and North Africa. World Bank Econ. Rev. 28, 48–73 (2014).

    Article  Google Scholar 

  63. Singto, C., de Vries, M., Hofstede, G. J. & Fleskens, L. Ex ante impact assessment of reservoir construction projects for different stakeholders using agent-based modeling. Water Resour. Manag. 35, 1047–1064 (2021).

    Article  Google Scholar 

  64. Amjath-Babu, T. S. et al. Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin. Appl. Energy 239, 494–503 (2019).

    Article  Google Scholar 

  65. Bazzana, D., Gilioli, G. & Zaitchik, B. Impact of hydropower development on rural livelihood: an agent-based exploration. J. Clean. Prod. 275, 1–15 (2020).

    Article  Google Scholar 

  66. Naderi, M. M., Mirchi, A., Bavani, A. R. M., Goharian, E. & Madani, K. System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: application to Qazvin Plain, Iran. J. Environ. Manage. 280, 111843 (2021).

    Article  PubMed  Google Scholar 

  67. Auchincloss, A. H., Riolo, R. L., Brown, D. G., Cook, J. & Diez Roux, A. V. An agent-based model of income inequalities in diet in the context of residential segregation. Am. J. Prev. Med. 40, 303–311 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Whitney, C. W. et al. Homegardens and the future of food and nutrition security in southwest Uganda. Agric. Syst. 154, 133–144 (2017).

    Article  Google Scholar 

  69. Cheng, X. et al. Modelling environment and poverty factors for sustainable agriculture in the Three Gorges Reservoir Regions of China. Land Degrad. Dev. 29, 3940–3953 (2018).

    Article  Google Scholar 

  70. Balié, J. et al. Domestic and international impacts of the rice trade policy reform in the Philippines. Food Policy 92, 1–21 (2020).

    Article  Google Scholar 

  71. Jafari, Y., Othman, J. & Kuhn, A. Market and welfare impacts of agri-environmental policy options in the Malaysian rice sector. Malays. J. Econ. Stud. 54, 179–201 (2017).

    Article  Google Scholar 

  72. Cheng, K., Fu, Q., Li, T. X., Jiang, Q. X. & Liu, W. Regional food security risk assessment under the coordinated development of water resources. Nat. Hazards 78, 603–619 (2015).

    Article  Google Scholar 

  73. Pan, Y., Yu, Z., Holst, J. & Doluschitz, R. Integrated assessment of cropping patterns under different policy scenarios in Quzhou County, North China Plain. Land Use Policy 40, 131–139 (2014).

    Article  Google Scholar 

  74. Parsons, D. & Nicholson, C. F. Assessing policy options for agricultural livestock development: a case study of Mexico’s sheep sector. Cogent Food Agric. 3, 1–20 (2017).

    Google Scholar 

  75. Gerber, A. Why do some food availability policies fail? A simulation approach to understanding food production systems in South-East Africa. Syst. Res. Behav. Sci. 34, 386–400 (2017).

    Article  Google Scholar 

  76. Gies, L., Agusdinata, D. B. & Merwade, V. Drought adaptation policy development and assessment in East Africa using hydrologic and system dynamics modeling. Nat. Hazards 74, 789–813 (2014).

    Article  Google Scholar 

  77. Mahjori Karmozdi, K. et al. Sustainable economic rural development system pattern in Ghaemshahr: an application of the developed TOP-MARD core model. Environ. Dev. Sustain. 22, 5793–5817 (2020).

    Article  Google Scholar 

  78. Kopainsky, B. et al. Designing sustainable food security policies in sub-saharan african countries: how social dynamics over-ride utility evaluations for good and bad. Syst. Res. Behav. Sci. 29, 575–589 (2012).

    Article  Google Scholar 

  79. Allcott, H. et al. Food deserts and the causes of nutritional inequality. Q. J. Econ. 134, 1793–1844 (2019).

    Article  MATH  Google Scholar 

  80. Berger, T. et al. Can smallholder farmers adapt to climate variability, and how effective are policy interventions? Agent-based simulation results for Ethiopia. Agric. Econ. 48, 693–706 (2017).

    Article  Google Scholar 

  81. Le, Q. B., Park, S. J. & Vlek, P. L. G. Land Use Dynamic Simulator (LUDAS): a multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system 2. Scenario-based application for impact assessment of land-use policies. Ecol. Inform. 5, 203–221 (2010).

    Article  Google Scholar 

  82. Engelbert, T., Bektasoglu, B. & Brockmeier, M. Moving toward the EU or the Middle East? An assessment of alternative Turkish foreign policies utilizing the GTAP framework. Food Policy 47, 46–61 (2014).

    Article  Google Scholar 

  83. Lin, H., Glauben, T., Yang, J. & He, L.-Y. Impacts of the US Farm Bill 2008 on China’s agricultural production and rural poverty. Agric. Econ. Ekon. 58, 157–164 (2012).

    Google Scholar 

  84. Huang, J., Liu, Y., Zhang, X., Wang, Y. Y. & Wang, Y. Y. A Scenario-based simulation of land system changes on dietary changes: a case study in China. Sustainability 11, 1–18 (2019).

    Article  Google Scholar 

  85. Rodriguez, L. C. et al. Community-based interventions for the use and conservation of animal genetic resources: the case of indigenous scavenger chicken production in Benin. Trop. Anim. Health Prod. 43, 961–966 (2011).

    Article  PubMed  Google Scholar 

  86. Kasteng, F. et al. Cost-effectiveness and economies of scale of a mass radio campaign to promote household life-saving practices in Burkina Faso. BMJ Glob. Health 3, 1–11 (2018).

    Article  Google Scholar 

  87. Huang, Q., Song, W. & Song, C. Consolidating the layout of rural settlements using system dynamics and the multi-agent system. J. Clean. Prod. 274, 1–17 (2020).

    Article  Google Scholar 

  88. Benfica, R., Cunguara, B. & Thurlow, J. Linking agricultural investments to growth and poverty: an economywide approach applied to Mozambique. Agric. Syst. 172, 91–100 (2019).

    Article  Google Scholar 

  89. Ingram, J. Nutrition security is more than food security. Nat. Food 1, 2 (2020).

    Article  Google Scholar 

  90. Mukarati, J., Mongale, I. P. I. P. I. P. & Makombe, G. Land redistribution and the South African economy. Agric. Econ. 66, 46–54 (2020).

    Google Scholar 

  91. Hansen, J., Tuan, F. & Somwaru, A. Do China’s agricultural policies matter for world commodity markets? Chin. Agric. Econ. Rev. 3, 6–25 (2011).

    Article  Google Scholar 

  92. Burdock, R. P. & Crawford, J. W. Combining micro-bottom-up and macro-top-down modelling responses to nutrient cycles in complex agricultural systems. Nutr. Cycl. Agroecosystems 103, 257–278 (2015).

    Article  CAS  Google Scholar 

  93. Krook-Riekkola, A., Berg, C., Ahlgren, E. O. & Söderholm, P. Challenges in top-down and bottom-up soft-linking: lessons from linking a Swedish energy system model with a CGE model. Energy 141, 803–817 (2017).

    Article  Google Scholar 

  94. Niamir, L., Ivanova, O. & Filatova, T. Economy-wide impacts of behavioral climate change mitigation: linking agent-based and computable general equilibrium models. Environ. Model. Softw. 134, 104839 (2020).

    Article  Google Scholar 

  95. Dou, Y. et al. Land-use changes in distant places: implementation of a telecoupled agent-based model. JASSS 23, 1–29 (2020).

    Article  Google Scholar 

  96. Mason, N. M. & Myers, R. J. The effects of the Food Reserve Agency on maize market prices in Zambia. Agric. Econ. 44, 203–216 (2013).

    Article  Google Scholar 

  97. Donovan, J., Rutsaert, P., Spielman, D., Shikuku, K. M. & Demont, M. Seed value chain development in the Global South: key issues and new directions for public breeding programs. Outlook Agric. 50, 366–377 (2021).

    Article  Google Scholar 

  98. Johnson, B. T. & Hennessy, E. A. Systematic reviews and meta-analyses in the health sciences: best practice methods for research syntheses. Soc. Sci. Med. 233, 237–251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).

    Article  Google Scholar 

  100. Eyles, H., Ni Mhurchu, C., Nghiem, N. & Blakely, T. Food Pricing Strategies, Population diets, and non-communicable disease: a systematic review of simulation studies. PLoS Med. 9, 1–22 (2012).

    Article  Google Scholar 

  101. Mertens, E., Genbrugge, E., Ocira, J. & Peñalvo, J. L. Microsimulation modeling in food policy: a scoping review of methodological aspects. Adv. Nutr. https://doi.org/10.1093/advances/nmab129 (2021).

  102. Langellier, B. A. et al. Complex systems approaches to diet: a systematic review. Am. J. Prev. Med. 57, 273–281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. High Level Panel of Experts. Nutrition and food systems. Committee on World Food Security http://www.fao.org/3/a-i7846e.pdf (2017).

  104. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan - a web and mobile app for systematic reviews. Systematic Reviews. 5, 1–10 (2016).

    Article  Google Scholar 

  105. Niedbalski, J. & Ślęzak, I. in Computer Supported Qualitative Research (eds. Costa, A. P., Reis, L. P., Sousa, F. N. de Moreira, A. & Lamas, D.) 85–94 (Springer, 2017).

  106. Hsieh, H. F. & Shannon, S. E. Three approaches to qualitative content analysis. Qual. Health Res. 15, 1277–1288 (2005).

    Article  PubMed  Google Scholar 

  107. Teeuwen, A. S. Replication data for ‘A systematic review of the impact of food security governance measures as simulated in modelling studies’. https://doi.org/10.7910/DVN/Q9WXC2 (2022)

  108. Brady, M. V., Hristov, J., Sahrbacher, C., Soderberg, T. & Wilhelmsson, F. Is passive farming a problem for agriculture in the EU? J. Agric. Econ. 68, 632–650 (2017).

    Article  Google Scholar 

  109. Brown, C. et al. Experiments in globalisation, food security and land use decision making. PLoS ONE 9, e114213 (2014).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  110. Möhring, A. et al. Causes and impacts of the mis-representation of agricultural policy—the case of food supply security payments in Switzerland. J. Policy Model. 42, 466–482 (2020).

    Article  Google Scholar 

  111. Namany, S., Govindan, R., Alfagih, L., McKay, G. & Al-Ansari, T. Sustainable food security decision-making: an agent-based modelling approach. J. Clean. Prod. 255, 1–29 (2020).

  112. Potori, N., Kovács, M. & Vásáry, V. The common agricultural policy 2014–2020: an impact assessment of the new system of direct payments in Hungary. Stud. Agric. Econ. 115, 118–123 (2013).

    Article  Google Scholar 

  113. Schreinemachers, P., Berger, T. & Aune, J. B. Simulating soil fertility and poverty dynamics in Uganda: a bio-economic multi-agent systems approach. Ecol. Econ. 64, 387–401 (2007).

    Article  Google Scholar 

  114. Tian, Q., Holland, J. H. & Brown, D. G. Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: insights from an agent-based model. Agric. Syst. 148, 12–27 (2016).

    Article  Google Scholar 

  115. Wang, J., Brown, D. G., Riolo, R. L., Page, S. E. & Agrawal, A. Exploratory analyses of local institutions for climate change adaptation in the Mongolian grasslands: an agent-based modeling approach. Glob. Environ. Chang. Policy Dimens. 23, 1266–1276 (2013).

    Article  Google Scholar 

  116. Yuan, C. C., Liu, L. M., Qi, X. X., Fu, Y. H. & Ye, J. W. Assessing the impacts of the changes in farming systems on food security and environmental sustainability of a Chinese rural region under different policy scenarios: an agent-based model. Environ. Monit. Assess. 189, 119 (2017).

  117. Wossen, T. & Berger, T. Climate variability, food security and poverty: agent-based assessment of policy options for farm households in Northern Ghana. Environ. Sci. Policy 47, 95–107 (2015).

    Article  Google Scholar 

  118. Wossen, T., Berger, T., Haile, M. G. & Troost, C. Impacts of climate variability and food price volatility on household income and food security of farm households in East and West Africa. Agric. Syst. 163, 7–15 (2018).

    Article  Google Scholar 

  119. Poblacion, A. et al. Can food insecurity be reduced in the United States by improving SNAP, WIC, and the community eligibility provision? World Med. Heal. Policy 9, 435–455 (2017).

    Article  Google Scholar 

  120. Schulze, J., Frank, K. & Mueller, B. Governmental response to climate risk: model-based assessment of livestock supplementation in drylands. Land Use Policy 54, 47–57 (2016).

    Article  Google Scholar 

  121. Ramli, N. N., Mad Nasir Shamsudin, Z. M. & Radam, A. The impact of fertilizer subsidy on malaysia paddy/rice industry using a system dynamics approach. Int. J. Soc. Sci. Humanit. 2, 213–219 (2012).

    Google Scholar 

  122. Jin, L., Chang, Y., Ju, X. & Xu, F. A Study on the sustainable development of water, energy, and food in China. Int. J. Environ. Res. Public Health 16, 1-16 (2019).

  123. Kotir, J. H., Smith, C., Brown, G., Marshall, N. & Johnstone, R. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Sci. Total Environ. 573, 444–457 (2016).

  124. Vaghefi, N., Shamsudin, M. N., Radam, A. & Rahim, K. A. Impact of climate change on food security in Malaysia: economic and policy adjustments for rice industry. J. Integr. Environ. Sci. 13, 19–35 (2016).

    Article  Google Scholar 

  125. Alary, V. & Deybe, D. Impacts of different water tariff reforms on rural livelihood and water and public resource in India: the case of Haryana producers. Int. J. Water 3, 84–99 (2005).

    Article  Google Scholar 

  126. Atallah, S. S., Gómez, M. I. & Björkman, T. Localization effects for a fresh vegetable product supply chain: Broccoli in the eastern United States. Food Policy 49, 151–159 (2014).

    Article  Google Scholar 

  127. Haggblade, S., Me-Nsope, N. M. & Staatz, J. M. Food security implications of staple food substitution in Sahelian West Africa. Food Policy 71, 27–38 (2017).

  128. Ramadan, R. & Thomas, A. Evaluating the impact of reforming the food subsidy program in Egypt: a mixed demand approach. Food Policy 36, 638–646 (2011).

    Article  Google Scholar 

  129. Shao, Q., Drabik, D., Gouse, M. & Wesseler, J. Food self-sufficiency and GM regulation under conflicting interests: the case of GM maize in South Africa. Agrekon 59, 110–128 (2020).

    Article  Google Scholar 

  130. Kapuya, T., Meyer, F. H. & Kirsten, J. F. Modelling the impact of the ‘fast track’ land reform policy on Zimbabwe’s maize sector. Dev. South. Afr. 30, 417–436 (2013).

    Article  Google Scholar 

  131. Qian, J., Ito, S., Mu, Y., Zhao, Z. & Wang, X. The role of subsidy policies in achieving grain self-sufficiency in China: a partial equilibrium approach. Agric. Econ. Ekon. 64, 23–35 (2018).

    Google Scholar 

  132. Kuhn, A., Gaiser, T. & Gandonou, E. Simulating the effects of tax exemptions on fertiliser use in Benin by linking biophysical and economic models. Agric. Syst. 103, 509–520 (2010).

    Article  Google Scholar 

  133. Rae, A. & Josling, T. Processed food trade and developing countries: protection and trade liberalization. Food Policy 28, 147–166 (2003).

    Article  Google Scholar 

  134. Reimer, J. J., Weerasooriya, S. & West, T. T. How does the supplemental nutrition assistance program affect the U.S. Economy? Agric. Resour. Econ. Rev. 44, 233–252 (2015).

    Article  Google Scholar 

  135. Verma, M., Hertel, T. W. & Valenzuela, E. Are the poverty effects of trade policies invisible? World Bank Econ. Rev. 25, 190–211 (2011).

    Article  Google Scholar 

  136. Winters, L. A. The European agricultural trade policies and poverty. Eur. Rev. Agric. Econ. 32, 319–346 (2005).

    Article  Google Scholar 

  137. Yang, F., Urban, K., Brockmeier, M., Bekkers, E. & Francois, J. Impact of increasing agricultural domestic support on China’s food prices considering incomplete international agricultural price transmission. Chin. Agric. Econ. Rev. 9, 535–557 (2017).

    Article  Google Scholar 

  138. De Quatrebarbes, C., Boccanfuso, D. & Savard, L. Beyond representative households: the macro–micro impact analysis of VAT designs applied to Niger. Econ. Model. 57, 76–92 (2016).

    Article  Google Scholar 

  139. Kuiper, M. & Ruben, R. Poverty targeting with heterogeneous endowments: a micro-simulation analysis of a less-favoured Ethiopian village. Sustain. Poverty Reduct. Less Favoured Areas 37, 421–441 (2007).

    Article  Google Scholar 

  140. Traub, L. N. & Jayne, T. S. The effects of price deregulation on maize marketing margins in South Africa. Food Policy 33, 224–236 (2008).

    Article  Google Scholar 

  141. Akbar, M. & Jabbar, A. Impact of macroeconomic policies on national food security in Pakistan: simulation analyses under a simultaneous equations framework. Agric. Econ. Ekon. 63, 471–484 (2017).

    Google Scholar 

  142. An, R. Nationwide expansion of a financial incentive program on fruit and vegetable purchases among Supplemental Nutrition Assistance Program participants: a cost-effectiveness analysis. Soc. Sci. Med. 147, 80–88 (2015).

    Article  PubMed  Google Scholar 

  143. Chen, X., Bouchard, D. & Anderson, G. Is the dairy relief program really working? Evaluating Maine’s tier payment program using a simulation approach. Sustainability 10, 1–16 (2018).

  144. Du, R. Y. & Kamakura, W. A. Where did all that money go? Understanding how consumers allocate their consumption budget. J. Mark. 72, 109–131 (2008).

  145. Ferrari, G., Jimenez, J. M., Secondi, L., Mondéjar Jiménez, J. & Secondi, L. Tourists’ expenditure in Tuscany and its impact on the regional economic system. J. Clean. Prod. 171, 1437–1446 (2018).

    Article  Google Scholar 

  146. Müller, D., Munroe, D. K., Muller, D. & Munroe, D. K. Tradeoffs between rural development policies and forest protection: spatially explicit modeling in the central highlands of Vietnam. Land Econ. 81, 412–425 (2005).

    Article  Google Scholar 

  147. Nordström, J. & Thunström, L. The impact of tax reforms designed to encourage healthier grain consumption. J. Health Econ. 28, 622–634 (2009).

    Article  PubMed  Google Scholar 

  148. Lee, H., Sumner, D. A. & Ahn, B. Consequences of further opening of the Korean dairy market. Food Policy 31, 238–248 (2006).

    Article  Google Scholar 

  149. Jin, L. et al. A study on the sustainable development of water, energy, and food in China. Int. J. Environ. Res. Public Health 16, 289–299 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This research was made possible thanks to the funding of the 4TU.HTSF DeSIRE programme of the four universities of technology in the Netherlands and the National Science Foundation-China (grant agreement 42001228). The authors thank Y. Georgiadou for helping us define and categorize governance measures.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.S.T., M.A.M. and A.N. Formal analysis: A.S.T. Methodology: A.S.T. and M.A.M. Supervision: M.A.M., Y.D. and A.N. Original draft: A.S.T. Review and editing: A.S.T., M.A.M., Y.D. and A.N.

Corresponding author

Correspondence to Aleid Sunniva Teeuwen.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Peer review

Peer review information

Nature Food thanks Aogán Delaney, Derek Headey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Domains of food security governance simulation models.

Extended Data Fig. 2

Social and spatial targeting of governance measures by different simulation models.

Extended Data Table 1 Framework and definitions used for governance classification

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Supplementary Tables 1 and 2, Supplementary Figs. 1–5 and supplementary references.

Reporting Summary

Supplementary Data 1

This table contains all the indicators used by the reviewed body of food security governance simulation modelling studies to assess the impact of governance on food security. The indicators are arranged according to the number of studies that use them, and the food security dimension (access, availability, utilization and stability) they belong to.

Supplementary Data 2

This dataset contains: (1) a list of all the screened studies and information on the databases we found them on, their eligibility and, if applicable, their reasons for rejection; (2) the ineligibility criteria; and (3) a simplified list of all eligible studies. More information can be found in the Dataverse repository (data availability statement).

Supplementary Data 3

This dataset contains information on (1) the PRISMA 2020 statement, comprising a 27-item checklist addressing the introduction, methods, results and discussion sections of a systematic review report, and (2) the 12-item PRISMA 2020 extension for abstracts.

Supplementary Data 4

Analyses of the quantitative impacts of governance measures on food security are important to inform decision makers about the effectiveness of different governance measures and, through this, speed up the alleviation of food insecurity. To facilitate such analyses, we explored which studies and governance measures within the reviewed pool of literature could be compared as they used the same food security indicators, measured with the same spatial and temporal precision, and were implemented either inside a jurisdiction, outside it or globally. Using these criteria for comparability, we found 26 groups with three to six studies, exploring up to 13 governance measures, that could potentially be compared in meta-analyses.

Source data

Source Data Fig. 2

This dataset contains information about which food security governance simulation studies use different model types in combination with different (1) model domains, (2) spatial scales, (3) geographic foci and (4) food value chain echelons.

Source Data Fig. 3

This dataset contains information on which combinations of food value chain echelons are covered by different food security governance simulation studies.

Source Data Fig. 4

This dataset contains information on food security governance studies' use of socially and spatially disaggregated data, and assessment of socially and spatially targeted governance.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teeuwen, A.S., Meyer, M.A., Dou, Y. et al. A systematic review of the impact of food security governance measures as simulated in modelling studies. Nat Food 3, 619–630 (2022). https://doi.org/10.1038/s43016-022-00571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-022-00571-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene