Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human activities shape important geographic differences in fish mercury concentration levels

Abstract

Fish consumption is a major route of human exposure to mercury (Hg), yet limited understanding of how anthropogenic activities drive geographic variations in fish Hg worldwide hinders effective Hg pollution management. Here we characterized global geographic variations in total Hg (THg) and methylmercury (MeHg), compared THg and MeHg levels between the United States and China, and used a structural equation model to link the geographic variability of MeHg in fish to human activities. Despite previously reported higher Hg emissions in China, Chinese fish have lower THg and MeHg levels than fish in the United States owing to a lower trophic magnification slope, shortened food chains and shorter fish lifespans. The structural equation model revealed strong impacts of human activities on MeHg levels in fish. In the future, China may face elevated MeHg levels in fish with the ongoing recovery of food web ecology, highlighting the importance of local policies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic patterns of fish Hg concentrations from different regions worldwide.
Fig. 2: Geographic patterns of fish Hg concentrations from different regions of China.
Fig. 3: Geographic patterns of fish Hg concentrations from different regions of the United States.
Fig. 4: Comparison of fish Hg concentrations between China and the United States.
Fig. 5: TMS, baseline (the intercept) and primary consumer (TL2) Hg concentration of China and the United States.
Fig. 6: Factors affecting the Hg bioaccumulation process in fish.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and Supplementary Information. Source data are provided with this paper.

Code availability

The LMM code is available from the corresponding author Yongguang Yin (ygyin@rcees.ac.cn) upon request.

References

  1. Wang, F. et al. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere?—Implications for evaluating the effectiveness of the Minamata Convention. Sci. Total Environ. 674, 58–70 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Lin, C. C., Yee, N. & Barkay, T. in Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 155–191 (Wiley, 2012).

  3. Buck, D. G. et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lavoie, R. A., Kyser, T. K., Friesen, V. L. & Campbell, L. M. Tracking overwintering areas of fish-eating birds to identify mercury exposure. Environ. Sci. Technol. 49, 863–872 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Undeland, I., Ellegård, L. & Sandberg, A. S. Fish and cardiovascular health. Scand. J. Nutr. 48, 119–130 (2004).

    Article  Google Scholar 

  6. Ward, D. M., Nislow, K. H., Chen, C. Y. & Folt, C. L. Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon. Trans. Am. Fish. Soc. 139, 1–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammerschmid, C. R. & Fitzgerald, W. F. Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ. Sci. Technol. 40, 7764–7770 (2016).

    Article  ADS  Google Scholar 

  8. Cossa, D. et al. Influences of bioavailability, trophic position and growth on methylmercury in hakes (Merluccius merluccius) from Northwestern Mediterranean and Northeastern Atlantic. Environ. Sci. Technol. 46, 4885–4893 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lavoie, R. A. et al. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47, 13385–13394 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Eagles-Smith, C. A. et al. Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47, 170–197 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Wang, X. & Wang, W. The three ‘B’ of fish mercury in China: bioaccumulation, biodynamics and biotransformation. Environ. Pollut. 250, 216–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Y., Vogt, R. & Larssen, T. Environmental mercury in China: a review. Environ. Toxicol. Chem. 31, 2431–2444 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, H. & Hu, Y. Understanding the paradox of mercury pollution in China: high concentrations in environmental matrix yet low levels in fish on the market. Environ. Sci. Technol. 46, 4695–4696 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhou et al. Causes of low mercury levels in fish from the Three Gorges Reservoir, China. J. Hazard. Mater. 464, 132930 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. UNEP. Minamata Convention on Mercury: Text and Annexes. www.mercuryconvention.org (2013).

  16. Zhang, H. et al. Decreasing mercury levels in consumer fish over the three decades of increasing mercury emissions in China. Eco. Environ. Health 1, 46–52 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fu, X. W., Feng, X. B., Sommar, J. & Wang, S. F. A review of studies on atmospheric mercury in China. Sci. Total Environ. 421, 73–81 (2012).

    Article  ADS  PubMed  Google Scholar 

  18. Yu, C. et al. Mercury and methylmercury in China’s lake sediments and first estimation of mercury burial fluxes. Sci. Total Environ. 770, 145338 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Fleck, J. A. et al. Mercury and methylmercury in aquatic sediment across western North America. Sci. Total Environ. 568, 727–738 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Liu, M. D. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).

    Article  ADS  CAS  Google Scholar 

  21. Liu, M. D. et al. Observation-based mercury export from rivers to coastal oceans in East Asia. Environ. Sci. Technol. 55, 14269–14280 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Perrot, V., Landing, W. M., Grubbs, R. D. & Salters, V. J. M. Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2 years after the Deepwater Horizon oil spill: insights from Hg, C, N and S stable isotopes. Sci. Total Environ. 666, 828–838 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Lescord, G. L., Johnston, T. A., Branfireun, B. A. & Gunn, J. M. Percentage of methylmercury in the muscle tissue of freshwater fish varies with body size and age and among species. Environ. Toxicol. Chem. 37, 2682–2691 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Yoshino, K. et al. Food sources are more important than biomagnification on mercury bioaccumulation in marine fishes. Environ. Pollut. 262, 113982 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Chumchal, M. M. et al. Habitat-specific differences in mercury concentration in a top predator from a shallow lake. Trans. Am. Fish. Soc. 137, 195–208 (2008).

    Article  Google Scholar 

  26. Zhang, M. et al. Trophic level changes of fishery catches in Lake Chaohu, Anhui Province, China: trends and causes. Fish. Res. 131–133, 15–20 (2012).

    Article  Google Scholar 

  27. Du, J. et al. Impacts of fishing on the marine mean trophic level in Chinese marine area. Acta Ecol. Sin. 35, 83–88 (2015).

    Article  Google Scholar 

  28. Braune, B. M. Mercury accumulation in relation to size and age of Atlantic herring (Clupea harengus harengus) from the southwestern Bay of Fundy, Canada. Arch. Environ. Contam. Toxicol. 16, 311–320 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Dang, F. & Wang, W. X. Why mercury concentration increases with fish size? Biokinetic explanation. Environ. Pollut. 163, 192–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. McManamay, R. A. et al. Scaling mercury biodynamics from individuals to populations: implications of an herbivorous fish on mercury cycles in streams. Freshwater Biol. 64, 815–831 (2019).

    Article  CAS  Google Scholar 

  31. Wang, R. & Wang, W. X. Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Aquat. Toxicol. 114, 23–30 (2012).

    Article  PubMed  Google Scholar 

  32. UNIDO Industrial Statistics Database (INDSTAT): 2-Digit Level of ISIC Code (Revision 3). United Nations Industrial Development Organization. https://stat.unido.org/data/table (2021).

  33. UN Environment. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland (2019).

  34. Li, S. An approach to accelerating innovative development of the lake science in China. Bull. Chin. Acad. Sci. 21, 399–405 (2006).

    ADS  Google Scholar 

  35. Bachmann, R. W., Hoyer, M. V. & Canfield, D. E. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnol. Oceanogr. 58, 945–950 (2013).

    Article  ADS  CAS  Google Scholar 

  36. Pickhardt, P. C. et al. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc. Natl Acad. Sci. USA 99, 4419–4423 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lei, P. et al. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments. Environ. Int. 126, 279–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Soerensen, A. L. et al. Eutrophication increases phytoplankton methylmercury concentrations in a coastal sea—a Baltic Sea case study. Environ. Sci. Technol. 50, 11787–11796 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chen, C. Y. et al. A critical time for mercury science to inform global policy. Environ. Sci. Technol. 52, 9556–9561 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, W. H. et al. Hidden loss of wetlands in China. Curr. Biol. 29, 3065–3071 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Dahl, T. E. Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States, 2004 to 2009 (US Fish & Wildlife Service, Fisheries and Habitat Conservation, 2009).

  42. Paranjape, A. R. & Hall, B. D. Recent advances in the study of mercury methylation in aquatic systems. FACETS 2, 85–119 (2017).

    Article  Google Scholar 

  43. Sharpley, A. Managing agricultural phosphorus for water quality: lessons from the USA and China. J. Environ. Sci. 26, 1770–1782 (2014).

    Article  Google Scholar 

  44. Walters, D. M. et al. Food web controls on mercury fluxes and fate in the Colorado River, Grand Canyon. Sci. Adv. 6, eaaz4880 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, G. et al. Legacy and fate of mercury and methylmercury in the Florida Everglades. Environ. Sci. Technol. 45, 496–501 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Rumbold, D. in Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration Vol. 2 (eds Pollman, C. et al.) 49–86 (Springer Nature, 2019).

  47. Govaerts, A. et al. Distribution and bioaccumulation of POPs and mercury in the Ga-Selati River (South Africa) and the rivers Gudbrandsdalslagen and Rena (Norway). Environ. Int. 121, 1319–1330 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Giang, A. & Selin, N. E. Benefits of mercury controls for the United States. Proc. Natl Acad. Sci. USA 113, 286–291 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wang, Y. et al. A review of studies on the biogeochemical behaviors of mercury in the Three Gorges Reservoir, China. Bull. Environ. Contam. Toxicol. 102, 686–694 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Feng, X. B. et al. Mercury pollution in China: implications on the implementation of the Minamata Convention. Environ. Sci. Process Impacts 24, 634–648 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Fry, B. & Chumchal, M. M. Mercury bioaccumulation in estuarine food webs. Ecol. Appl. 22, 606–623 (2012).

    Article  PubMed  Google Scholar 

  52. Shah, V. et al. Improved mechanistic model of the atmospheric redox chemistry of mercury. Environ. Sci. Technol. 55, 14445–14456 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Li, A. et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes. 4. Influencing factors, trends, and implications. Environ. Sci. Technol. 40, 7528–7534 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Clayden, M. G. et al. Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environ. Sci. Technol. 47, 12047–12053 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Jardine, T. D., Kidd, K. A. & Fisk, A. T. Applications, considerations and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ. Sci. Technol. 40, 7501–7511 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Borga, K. et al. Trophic magnification factors: considerations of ecology, ecosystems and study design. Integr. Environ. Asses. Manag. 8, 64–84 (2012).

    Article  CAS  Google Scholar 

  57. Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  58. Eagles-Smith, C. A. et al. Mercury in western North America: a synthesis of environmental contamination, fluxes, bioaccumulation and risk to fish and wildlife. Sci. Total Environ. 568, 1213–1226 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Pollman, C. D. Mercury cycling in aquatic ecosystems and trophic state-related variables—implications from structural equation modeling. Sci. Total Environ. 499, 62–73 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Thomas, S. M. et al. Climate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish size. Environ. Res. 188, 109750 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (22193051, 42394091, 22425606, 22006151, 21527901), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0750200) and NSF program (ECS1905239). This is publication #1765 from the Institute of Environment at Florida International University. Y.Y. acknowledges the support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y202011). We extend our gratitude for the support from the Fundamental Research Funds for the Central Universities (SWU-XDJH202320) from Southwest University to the Climate Change and its Environmental Implications (CCEI) Thrust. We thank Y. Zhang and Z. Song of Nanjing University for their help in calculating the annual Hg deposition and atmospheric Hg concentration.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: G.L., Y.Y. and Y.C. Investigation: Y.X. and Y.Y. Funding acquisition: Y.X., Y.Y., Y.C. and G.J. Writing—original draft: Y.X. Writing—review and editing: G.L., Y.Y., Y.L., D.W., Y.C. and G.J.

Corresponding authors

Correspondence to Yongguang Yin or Yong Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Maodian Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map of the site locations of peer-reviewed studies.

a, Worldwide, b, the US and c, China. Administrative boundary data of worldwide and China are supported by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn). Administrative boundary data of the US are supported by Natural Earth (https://www.naturalearthdata.com). The list of papers reviewed and the detailed sample points are present in the Source Data.

Source data

Extended Data Fig. 2 THg and MeHg concentrations (μg kg-1 ww), as well as MeHg% in fish of China with different dietary behaviors.

ac, Freshwater fish, df, marine fish. The detailed sample sizes are provided in the Source Data, and “n” represents the number of data points per graph. Green: herbivores, yellow: planktivores, blue: ominivores, and orange: carnivores.

Source data

Extended Data Fig. 3 Hg concentrations of different fish species in China.

a, THg (µg kg-1 ww), b, MeHg (µg kg-1 ww), c, MeHg%. The difference analysis of THg, MeHg and MeHg% among fish species was conducted by Rank transformed one-way ANOVA, owing to the non-normal distribution (Kolmogorov-Smirnov test, K-S test) and non-homogeneity of the variances (Levene test). Categories that share common letter do not differ significantly (two-sided tests): lower case letters are for comparison of Hg among freshwater species and capital letters are for comparison of Hg among marine fish species. The detailed sample sizes are provided in the Source Data, and “n” represents the number of data points per graph.

Source data

Extended Data Fig. 4 Hg concentrations in wild and farmed fish across China.

a, THg (µg kg-1 ww), b, MeHg (µg kg-1 ww), c, MeHg%. Data are the comprehensive presentation of Fig. 2. FW and FF are short for freshwater wild and farmed fish, and MW and MF are short for marine wild and farmed fish, respectively. The detailed sample sizes are provided in the Source Data, and “n” represents the number of data points per graph. A Mann-Whitney U test was performed to compared fish Hg levels between groups. Based on Monte Carlo analysis (two-sided), a p-value less than 0.05 indicates statistically significance.

Source data

Extended Data Fig. 5 Trophic levels of fish observed in China and the US.

FW and MW are short for freshwater and marine wild fish, respectively. The detailed sample sizes are provided in the Source Data, and “n” represents the number of data points per graph. A Mann-Whitney U test was performed to compared fish TL between groups. Based on Monte Carlo analysis (two-sided), a p-value less than 0.05 indicates statistically significance.

Source data

Extended Data Fig. 6 The growth traits of wild fish across China and the US collected.

a, Fish age, b, growth rate (cm/year). FW and MW are short for freshwater and marine wild fish, respectively. The detailed sample sizes are provided in the Source Data, and “n” represents the number of data points per graph. A Mann-Whitney U test was performed to compared fish age and growth rate between groups. Based on Monte Carlo analysis (two-sided), a p-value less than 0.05 indicates statistically significance.

Source data

Extended Data Fig. 7 The hypothesized fish mercury accumulation model summarizing pathways that directly and/or indirectly mediated mercury levels in fish.

Solid arrows pointing straight to fish mercury without any intermediate factors are the predicted direct pathways, while others are the predicted indirect pathways. Dotted arrows represent the modulating effect.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and 5, Notes 1–9 and References.

Reporting Summary

Supplementary Table 4

Detailed calculation process of UDF 1 for each sampling site in China (a) and the United States (b).

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Liu, G., Yin, Y. et al. Human activities shape important geographic differences in fish mercury concentration levels. Nat Food 5, 836–845 (2024). https://doi.org/10.1038/s43016-024-01049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-024-01049-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene