Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced sulfide burial in low-oxygen aquatic environments could offset the carbon footprint of aquaculture production

Abstract

Carbon removal from the atmosphere is needed to keep global mean temperature increases below 2 °C. Here, we develop a model to explore how alkalinity production through enhanced iron sulfide formation in low-oxygen aquatic environments, such as aquaculture systems, could offer a cost-effective means of CO2 removal. We show that enhanced sulfide burial through the supply of reactive iron to surface sediments may be able to capture up to a hundred million tonnes of CO2 per year, particularly in countries with the highest number of fish farms, such as China and Indonesia. These efforts could largely offset the carbon footprint associated with their aquaculture industry. Enhanced sulfide burial could directly benefit both fish farms and surrounding ecosystems by removing toxic sulfide from aquatic systems, providing an addition to durable global CO2 removal markets and a path towards large-scale, carbon-neutral aquatic food production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic sedimentary sulfur cycling and modelled rates of sulfate reduction.
Fig. 2: The modelled flux of sulfide burial and CDR for different SRRs.
Fig. 3: CDR potential of anoxic basins, wetlands and fish farms.
Fig. 4: Estimated cost of ESB in China.

Similar content being viewed by others

Data availability

The data for the areas of fish farms were obtained from the Food and Agriculture Organization of the United Nations (FAO).

Code availability

All model code and configuration files are available via Zenodo at https://doi.org/10.5281/zenodo.13286633 (ref. 50).

References

  1. Tollefson, J. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 562, 172–174 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Metz, B. et al. (eds) Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  3. Geden, O. An actionable climate target. Nat. Geosci. 9, 340–342 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  ADS  CAS  Google Scholar 

  5. van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Article  ADS  Google Scholar 

  6. Schenuit, F. et al. Carbon dioxide removal policy in the making: assessing developments in 9 OECD cases. Front. Clim. 3, 638805 (2021).

  7. Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36, S23–S32 (2011).

    Article  Google Scholar 

  9. Vergé, X. P. C., De Kimpe, C. & Desjardins, R. L. Agricultural production, greenhouse gas emissions and mitigation potential. Agric. For. Meteorol. 142, 255–269 (2007).

    Article  ADS  Google Scholar 

  10. Mrówczyńska-Kamińska, A., Bajan, B., Pawłowski, K. P., Genstwa, N. & Zmyślona, J. Greenhouse gas emissions intensity of food production systems and its determinants. PLoS ONE 16, e0250995 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    Article  ADS  Google Scholar 

  12. Moriondo, M., Giannakopoulos, C. & Bindi, M. Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim. Change 104, 679–701 (2011).

    Article  ADS  Google Scholar 

  13. Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article  ADS  Google Scholar 

  14. Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. 1, 7 (2019).

  15. Feng, E. Y., Koeve, W., Keller, D. P. & Oschlies, A. Model-based assessment of the CO2 sequestration potential of coastal ocean alkalinization. Earth’s Future 5, 1252–1266 (2017).

    Article  ADS  CAS  Google Scholar 

  16. Jorgensen, B. B. & Kasten, S. in Marine Geochemistry (eds Schulz, H.D. & Zabel, M.) 271–309 (Springer, 2006).

  17. Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849 (2019).

  18. Reithmaier, G. M. S. et al. Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink. Glob. Biogeochem. Cycles 35, e2020GB006785 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Aumont, O. & Bopp, L. Globalizing results from ocean in situ iron fertilization studies. Glob. Biogeochem. Cycles https://doi.org/10.1029/2005GB002591 (2006).

  20. Berner, R. A. Early Diagenesis: A Theoretical Approach (Princeton Univ. Press, 1980).

  21. Dale, A. et al. A revised global estimate of dissolved iron fluxes from marine sediments. Glob. Biogeochem. Cycles 29, 691–707 (2015).

  22. Holmer, M. & Frederiksen, M. S. Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry 85, 169–184 (2007).

    Article  CAS  Google Scholar 

  23. Karjalainen, J., Mäkinen, M. & Karjalainen, A. K. Sulfate toxicity to early life stages of European whitefish (Coregonus lavaretus) in soft freshwater. Ecotoxicol. Environ. Saf. 208, 111763 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems. Nat. Sustain. 6, 1087–1094 (2023).

  25. Tank Culture of Tilapia. The Fish Site https://thefishsite.com/articles/tank-culture-of-tilapia (2005).

  26. MacLeod, M. J., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones, A. R. et al. Climate-friendly seafood: the potential for emissions reduction and carbon capture in marine aquaculture. BioScience 72, 123–143 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, F. et al. Development of fisheries in China. Reprod. Breed. 1, 64–79 (2021).

    Article  Google Scholar 

  30. Oben, B., Molua, E. & Oben, P. Profitability of small-scale integrated fish–rice–poultry farms in Cameroon. J. Agric. Sci. 7, 11 (2015).

    Google Scholar 

  31. Suplee, M. & Cotner, J. Temporal changes in oxygen demand and bacterial sulfate reduction in inland shrimp ponds. Aquaculture 145, 141–158 (1996).

    Article  CAS  Google Scholar 

  32. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Holmer, M. Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquacult. Environ. Interact. 1, 57–70 (2010).

    Article  Google Scholar 

  34. Pester, M., Knorr, K.-H., Friedrich, M., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).

  35. van der Welle, M. E. W., Cuppens, M., Lamers, L. P. M. & Roelofs, J. G. M. Detoxifying toxicants: interactions between sulfide and iron toxicity in freshwater wetlands. Environ. Toxicol. Chem. 25, 1592–1597 (2006).

    Article  PubMed  Google Scholar 

  36. Kappler, A., Emerson, D., Gralnick, J., Roden, E. & Muehe, E. in Ehrlich’s Geomicrobiology (eds Ehrlich, H. L. et al.) 343–399 (Taylor & Francis, 2015).

  37. Iron Ore. Australian Government www.ga.gov.au/scientific-topics/minerals/mineral-resources-and-advice/australian-resource-reviews/iron-ore (2020).

  38. Haque, N. in Iron Ore 2nd edn (ed. Lu, L.) 691–710 (Woodhead Publishing, 2022).

  39. Haque, N. & Norgate, T. Life Cycle Assessment of Iron Ore Mining and Processing (Woodhead Publishing, 2015).

  40. Yermolenko, H. Australia has lowered its iron ore price forecast for 2022–2023. GMK Center https://gmk.center/en/news/australia-has-lowered-its-iron-ore-price-forecast-for-2022-2023/ (21 December 2022).

  41. Seven countries with the largest iron ore reserves in the world in 2019. NS Energy www.nsenergybusiness.com/features/world-iron-ore-reserves-countries/ (29 June 2021).

  42. Nanda, S., Reddy, S. N., Mitra, S. K. & Kozinski, J. A. The progressive routes for carbon capture and sequestration. Energy Sci. Eng. 4, 99–122 (2016).

    Article  CAS  Google Scholar 

  43. Berner, R. A. Sedimentary pyrite formation. Am. J. Sci. 268, 1–23 (1970).

    Article  ADS  CAS  Google Scholar 

  44. Kumar, E. & Kumar, A. Optimization of pollution load due to iron ore transportation-a case study. Proc. Earth Planet. Sci. 11, 224–231 (2015).

    Article  ADS  CAS  Google Scholar 

  45. Rennert, K. et al. Comprehensive evidence implies a higher social cost of CO2. Nature 610, 687–692 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. McFadden, B. R., Ferraro, P. J. & Messer, K. D. Private costs of carbon emissions abatement by limiting beef consumption and vehicle use in the United States. PLoS ONE 17, e0261372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

    Article  ADS  CAS  Google Scholar 

  48. Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geology 43, 607–610 (2015).

  49. Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).

  50. Fakhraee, M. MjFakh/Fish-Farms: v1. Zenodo https://doi.org/10.5281/zenodo.13905188 (2024).

  51. Frederiksen, M. S., Holmer, M., Díaz-Almela, E., Marba, N. & Duarte, C. M. Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Mar. Ecol. Prog. Ser. 345, 93–104 (2007).

    Article  ADS  CAS  Google Scholar 

  52. Holmer, M., Duarte, C. M. & Marbá, N. Iron additions reduce sulfate reduction rates and improve seagrass growth on organic-enriched carbonate sediments. Ecosystems 8, 721–730 (2005).

    Article  CAS  Google Scholar 

  53. Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003407 (2010).

Download references

Acknowledgements

N.J.P. acknowledges funding from the David and Lucile Packard Foundation and the Yale Center for Natural Carbon Capture.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.F. and N.J.P. Methodology: M.F. and N.J.P. Investigation: M.F. Visualization: M.F. Funding acquisition: N.J.P. Project administration: N.J.P. Supervision: N.J.P. Writing—original draft: M.F. and N.J.P. Writing—review and editing: M.F. and N.J.P.

Corresponding authors

Correspondence to Mojtaba Fakhraee or Noah J. Planavsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Neill Goosen, Bob Hilton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sensitivity analysis, Supplementary Tables 1–4, Figs. 1–5 and References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhraee, M., Planavsky, N.J. Enhanced sulfide burial in low-oxygen aquatic environments could offset the carbon footprint of aquaculture production. Nat Food 5, 988–994 (2024). https://doi.org/10.1038/s43016-024-01077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-024-01077-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology