Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Unrefined plant raw materials are key to nutritious food

Abstract

Food processing often overlooks nature’s complexity, favouring purified raw materials. This excessive purification fosters unsustainable practices and diminishes the taste and nutritional quality of food. Given the current global environmental and health crises, we propose three food innovation principles to embrace the complexity of plant raw materials: (1) leveraging the inherent chemical, physical, biological and nutritional potential of raw materials; (2) applying robust food processes that cope with raw material complexity; and (3) designing food products from field to colon. Adhering to these principles will allow the development of technologies that could transform raw materials into healthier, more sustainable food products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Component-based versus synergistic food processing.
Fig. 2: The three FIPs.
Fig. 3: Examples of processes fulfilling FIPs 1–3.

Similar content being viewed by others

References

  1. Willett, W. et al. Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  2. Dhir, B. & Singla, N. Consumption pattern and health implications of convenience foods: a practical review. Curr. J. Appl. Sci. Technol. 38, 1–9 (2020).

    Article  Google Scholar 

  3. Mezzenga, R., Schurtenberger, P., Burbidge, A. & Michel, M. Understanding foods as soft materials. Nat. Mater. 4, 729–740 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Borges, S., Brassesco, M. E., Cunha, S. A., Coscueta, E. R. & Pintado, M. in Enzymatic Processes for Food Valorization (eds Chávez González, M. L. et al.) 265–284 (Elsevier, 2024).

  5. Pouliot, Y., Conway, V. & Leclerc, P. L. in Food Processing: Principles and Applications (eds Clark, S. et al.) 33–60 (Wiley Blackwell, 2014).

  6. Fotschki, J., Ogrodowczyk, A. M., Wróblewska, B. & Juśkiewicz, J. Side streams of vegetable processing and its bioactive compounds support microbiota, intestine milieu, and immune system. Molecules 28, 4340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dwyer, J. T. et al. Fortification and health: challenges and opportunities. Adv. Nutr. 6, 124–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jang, J. & Lee, D. W. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. npj Sci. Food 8, 50 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, X., Zhang, T., Zhao, Y., Jiang, L. & Sui, X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem. 436, 137712 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Park, S. H., Lamsal, B. P. & Balasubramaniam, V. M. in Food Processing: Principles and Applications (eds Clark, S. et al.) 1–15 (Wiley Blackwell, 2014).

  11. Toivonen, P. M. A. & Brummell, D. A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 48, 1–14 (2008).

    Article  CAS  Google Scholar 

  12. Rani, H. & Bhardwaj, R. D. Quality attributes for barley malt: “the backbone of beer”. J. Food Sci. 86, 3322–3340 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Avezum, L. et al. Improving the nutritional quality of pulses via germination. Food Rev. Int. 39, 6011–6044 (2023).

    Article  CAS  Google Scholar 

  14. Pointner, T. et al. Comprehensive analysis of oxidative stability and nutritional values of germinated linseed and sunflower seed oil. Food Chem. 454, 139790 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Miyahira, R. F. & Antunes, A. E. C. Bacteriological safety of sprouts: a brief review. Int. J. Food Microbiol. 352, 109266 (2021).

    Article  PubMed  Google Scholar 

  16. Bilirgen, A. C. et al. Plant-based scaffolds in tissue engineering. ACS Biomater. Sci. Eng. 7, 926–938 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Ansari, Z. & Goomer, S. Natural gums and carbohydrate-based polymers: potential encapsulants. Indo Global J. Pharm. Sci. 12, 1–20 (2022).

    Article  CAS  Google Scholar 

  18. Ghazani, S. M. et al. Oleosome interfacial engineering to enhance their functionality in foods. Curr. Res. Food Sci. 8, 100682 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Czapalay, E. S., Soleimanian, Y., Stobbs, J. A. & Marangoni, A. G. Plant tissue-based scaffolds filled with oil function as adipose tissue mimetics. Curr. Res. Food Sci. 10, 101002 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steinkraus, K. H. Nutritional significance of fermented foods. Food Res. Int. 27, 259–267 (1994).

    Article  Google Scholar 

  21. Ray, R. C. et al. in Trending Topics on Fermented Foods (eds Martin, J. G. P. et al.) 1–57 (Springer, 2024).

  22. Castro-Alba, V. et al. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J. Sci. Food Agric. 99, 5239–5248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrau, F., Boido, E. & Ramey, D. Yeasts for low input winemaking: microbial terroir and flavor differentiation. Adv. Appl. Microbiol. 111, 89–121 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Bravo-Núñez, Á., Golding, M., Gómez, M. & Matia-Merino, L. Emulsification properties of garlic aqueous extract: effect of heat treatment and pH modification. Foods 12, 3721 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buhl, T. F., Christensen, C. H. & Hammershøj, M. Aquafaba as an egg white substitute in food foams and emulsions: protein composition and functional behavior. Food Hydrocoll. 96, 354–364 (2019).

    Article  CAS  Google Scholar 

  26. Mishra, K. Foam Formation and Processing of Glyceride Melt Suspensions with Crystal Fraction for Additive Manufacturing Applications. PhD thesis, ETH Zürich (2021).

  27. Lammers, V. R. G. A Novel Technology to Tailor Foam Structure in Gluten-Free Bakery Product Systems. PhD thesis, ETH Zürich (2016).

  28. Koller, C. High-Pressure Micro-Foaming of Fat-Continuous Confectionery Systems. PhD thesis, ETH Zürich (2015).

  29. Oliveira, L. C., Schmiele, M. & Steel, C. J. Development of whole grain wheat flour extruded cereal and process impacts on color, expansion, and dry and bowl-life texture. LWT 75, 261–270 (2017).

    Article  CAS  Google Scholar 

  30. Liu, C. et al. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology. J. Cereal Sci. 54, 473–480 (2011).

    Article  CAS  Google Scholar 

  31. Ullah, I. et al. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll 89, 512–522 (2019).

    Article  CAS  Google Scholar 

  32. Fox, P. F. Proteolysis during cheese manufacture and ripening. J. Dairy Sci. 72, 1379–1400 (1989).

    Article  CAS  Google Scholar 

  33. Park, S. H., Na, Y., Kim, J., Kang, S. D. & Park, K. H. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci. Biotechnol. 27, 299–312 (2018).

    CAS  PubMed  Google Scholar 

  34. Nicholson, R. A. & Marangoni, A. G. Enzymatic glycerolysis converts vegetable oils into structural fats with the potential to replace palm oil in food products. Nat. Food 1, 684–692 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Frias, J., Peñas, E. & Martinez-Villaluenga, C. in Fermented Foods in Health and Disease Prevention (eds Frias, J. et al.) 385–416 (Elsevier, 2017).

  36. Wollstonecroft, M. M. Investigating the role of food processing in human evolution: a niche construction approach. Archaeol. Anthropol. Sci. 3, 141–150 (2011).

    Article  Google Scholar 

  37. Beane, K. E. et al. Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Appl. Biol. Chem. 64, 36 (2021).

    Article  CAS  Google Scholar 

  38. Prückler, M. et al. Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Food Microbiol. 49, 211–219 (2015).

    Article  PubMed  Google Scholar 

  39. Meignen, B. et al. Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiol. 18, 239–245 (2001).

    Article  CAS  Google Scholar 

  40. Dobson, S. & Marangoni, A. G. Methodology and development of a high-protein plant-based cheese alternative. Curr. Res. Food Sci. 7, 100632 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harper, A. R., Dobson, R. C. J., Morris, V. K. & Moggré, G. J. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb. Biotechnol. 15, 1404–1421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guinee, T. in Advanced Dairy Chemistry Vol. 1B (eds McSweeney, P. & O’Mahony, J.) 347–415 (Springer, 2016).

  43. Hinrichs, J. Incorporation of whey proteins in cheese. Int. Dairy J. 11, 495–503 (2001).

    Article  CAS  Google Scholar 

  44. Joo, K. H., Kerr, W. L. & Cavender, G. A. The effects of okara ratio and particle size on the physical properties and consumer acceptance of tofu. Foods 12, 3004 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishra, K. et al. Valorization of cocoa pod side streams improves nutritional and sustainability aspects of chocolate. Nat. Food 5, 423–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buican, B. C., Colibaba, L. C., Luchian, C. E., Kallithraka, S. & Cotea, V. V. “Orange” wine—the resurgence of an ancient winemaking technique: a review. Agriculture 13, 1750 (2023).

    Article  CAS  Google Scholar 

  47. Pswarayi, F. & Gänzle, M. African cereal fermentations: a review on fermentation processes and microbial composition of non-alcoholic fermented cereal foods and beverages. Int. J. Food Microbiol. 378, 109815 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Houngbédji, M. & Jespersen, J. S. Wilfrid Padonou, S. & Jespersen, L. Cereal-based fermented foods as microbiota-directed products for improved child nutrition and health in sub-Saharan Africa. Crit. Rev. Food Sci. Nutr. 65, 3422–3443 (2025).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P.A.R., T.G. and A.B. thank the ETH Foundation for their generous support.

Author information

Authors and Affiliations

Authors

Contributions

T.G. and A.B. contributed equally to this work. T.G., A.B., K.M. and P.A.R. conceptualized the work. T.G., A.B., K.M., A.G.M. and P.A.R. wrote the original draft. A.B. created Figs. 1–3. T.G., A.B. and P.A.R. revised the final version of the paper. All authors reviewed the final version of the manuscript.

Corresponding authors

Correspondence to Kim Mishra or Patrick A. Rühs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Jose Miguel Aguilera, Lilia Ahrné and Caroline Joy Steel for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germerdonk, T., Bach, A., Marangoni, A.G. et al. Unrefined plant raw materials are key to nutritious food. Nat Food 6, 657–663 (2025). https://doi.org/10.1038/s43016-025-01195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01195-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing