Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacterial richness enhances the thermostability of soil organic matter via a long-term trade-off between molecular diversity and thermodynamic stability

Subjects

Abstract

The persistence of soil organic matter (SOM) is shaped by its molecular features and stability, but the temporal dynamics of these features remain unclear. Here we investigate the molecular diversity (the number of molecules) and molecular thermodynamic stability (the theoretical Gibbs free energy for the half reaction of carbon oxidation) of SOM in soils from long-term (>30 years) paddy and upland experimental fields. Thermogravimetric analysis shows that enhanced SOM thermostability aligns with the temporal variation of molecular thermodynamic stability in these soils. Increased SOM molecular thermodynamic stability occurs alongside decreased molecular diversity over decades, and this temporal trade-off (negative relationship) is modulated by increased bacterial richness. These findings highlight the role of microbial diversity in enhancing SOM thermostability and support strategies that promote bacterial richness for improved SOM persistence in agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in molecular diversity, molecular thermodynamic stability and thermostability index of SOM over time under four treatments in paddy soils and upland soils.
Fig. 2: Relationship between SOM thermostability and molecular thermodynamic stability, and the temporal variation of SOM molecular features in farmland soils.
Fig. 3: Relationships between bacterial richness and SOM molecular features in farmland soils.
Fig. 4: Variation of SOM molecular features at different times in the verification test.
Fig. 5: The conceptual framework for the evolution of SOM features over time in farmland soils.

Similar content being viewed by others

Data availability

The sequences have been deposited in the National Center for Biotechnology Information’s Sequence Read Archive under BioProject nos PRJNA995319 (bacteria in paddy soil), PRJNA995321 (fungi in paddy soil), PRJNA997090 (bacteria in upland soils) and PRJNA997086 (fungi in upland soil). The data on the properties of soil microorganisms and SOM are available via Figshare at https://doi.org/10.6084/m9.figshare.25824097.v2 (ref. 48). Source data are provided with this paper.

Code availability

No unique code is applied to this work.

References

  1. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 12, 574–580 (2022).

    Article  ADS  Google Scholar 

  3. Modak, K. et al. Response of oxidative stability of aggregate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India. Soil Till. Res. 195, 104370 (2019).

    Article  Google Scholar 

  4. Chi, J. L., Fan, Y. K., Wang, L. J., Putnis, C. V. & Zhang, W. J. Retention of soil organic matter by occlusion within soil minerals. Rev. Environ. Sci. Biotechnol. 21, 727–746 (2022).

    Article  CAS  Google Scholar 

  5. Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Whalen, E. D. et al. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding. Glob. Change Biol. 28, 7167–7185 (2022).

    Article  ADS  CAS  Google Scholar 

  7. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).

    Article  ADS  Google Scholar 

  9. Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M. C. & Lehmann, J. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nat. Geosci. 16, 115–122 (2023).

    Article  ADS  CAS  Google Scholar 

  11. Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Xiao, K. Q. et al. Introducing the soil mineral carbon pump. Nat. Rev. Earth Env. 4, 135–136 (2023).

    Article  CAS  Google Scholar 

  13. Bahureksa, W. et al. Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): a critical review of sample preparation, analysis, and data interpretation. Environ. Sci. Technol. 55, 9637–9656 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Tfaily, M. M. et al. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry. Anal. Chim. Acta 972, 54–61 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Weng, Z. et al. Probing the nature of soil organic matter. Crit. Rev. Environ. Sci. Technol. 52, 4072–4093 (2021).

    Article  Google Scholar 

  16. Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).

    Article  ADS  CAS  Google Scholar 

  17. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Plante, A. F., Fernández, J. M. & Leifeld, J. Application of thermal analysis techniques in soil science. Geoderma 153, 1–10 (2009).

    Article  ADS  CAS  Google Scholar 

  20. Peltre, C., Fernández, J. M., Craine, J. M. & Plante, A. F. Relationships between biological and thermal indices of soil organic matter stability differ with soil organic carbon level. Soil Sci. Soc. Am. J. 77, 2020–2028 (2013).

    Article  ADS  CAS  Google Scholar 

  21. Lopez-Capel, E., Sohi, S. P., Gaunt, J. L. & Manning, D. A. C. Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci. Soc. Am. J. 140, 136–140 (2005).

    Article  Google Scholar 

  22. Li, P. F. et al. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome 10, 108 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang, J. W. et al. Evaluation of microbe-driven soil organic matter quantity and quality by thermodynamic theory. mBio 12, e03252-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19, 988–995 (2013).

    Article  ADS  Google Scholar 

  25. Roth, V. N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12, 755–761 (2019).

    Article  ADS  CAS  Google Scholar 

  26. Davenport, R. et al. Decomposition decreases molecular diversity and ecosystem similarity of soil organic matter. Proc. Natl Acad. Sci. USA 120, e2303335120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).

    Article  ADS  CAS  Google Scholar 

  29. Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintrau, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93, 1–7 (2016).

    Article  CAS  Google Scholar 

  30. Sun, J., Ma, B. B. & Lu, X. Y. Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degrad. Dev. 29, 337–348 (2018).

    Article  Google Scholar 

  31. Wetherington, M. T. et al. Ecological succession and the competition–colonization trade-off in microbial communities. BMC Biol. 20, 262 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hall, S. J., Ye, C. L., Weintraub, S. R. & Hockaday, W. C. Molecular trade-offs in soil organic carbon composition at continental scale. Nat. Geosci. 13, 687–692 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Engelhardt, I. C. et al. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 12, 1061–1071 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dal Bello, M., Lee, H. S., Goyal, A. & Gore, J. Resource-diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).

    Article  PubMed  Google Scholar 

  35. Stegen, J. C. et al. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nat. Commun. 9, 585 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang, F. et al. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biol. Biochem. 157, 108238 (2021).

    Article  CAS  Google Scholar 

  38. Lane, J. M. et al. Soil sample storage conditions impact extracellular enzyme activity and bacterial amplicon diversity metrics in a semi-arid ecosystem. Soil Biol. Biochem. 175, 108858 (2022).

    Article  CAS  Google Scholar 

  39. Wu, M. et al. Using potential molecular transformation to understand the molecular trade-offs in soil dissolved organic matter. Environ. Sci. Technol. 56, 11827–11834 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  40. Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  41. Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).

    Article  CAS  Google Scholar 

  43. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Article  Google Scholar 

  45. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article  Google Scholar 

  46. Ji, M. K. et al. Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environ. Microbiol. 22, 2261–2272 (2020).

    Article  PubMed  CAS  Google Scholar 

  47. Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wu, M. Basic data-SOMT.xlsx. Figshare https://doi.org/10.6084/m9.figshare.25824097.v2 (2024).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant nos 2021YFD1500300 and 2022YFD2300300); the National Natural Science Foundation of China (grant no. 42077021); the Independent Deployment Project of Institute of Soil Science, Chinese Academy of Sciences (grant no. ISSAS2403); and the Natural Science Foundation of Jiangsu Province (grant no. BK20221005). We acknowledge A. T. Nottingham (University of Leeds) for his valuable suggestions during the preparation of the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., M.W., J.S. and X.Y. designed the framework. S.W., X.M., X.H. and M.L. collected the samples. C.Q. and J.L. conducted the verification experiment. M.W. and P.L. performed the data analysis. M.W. and J.S. wrote and revised the paper with input from the other authors. E.L. provided comments on the results and revised the original manuscript.

Corresponding authors

Correspondence to Shuang Wang, Jun Shan or Zhongpei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Anna Gunina, Sören Thiele-Bruhn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–7.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Figs. 1–7.

Source data

Source Data Fig. 1

Source data on SOM features in the field experiment.

Source Data Fig. 2

Source data for the correlations.

Source Data Fig. 3

Source data for the correlations.

Source Data Fig. 4

Source data on SOM features in the verification test.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Lugato, E., Li, P. et al. Bacterial richness enhances the thermostability of soil organic matter via a long-term trade-off between molecular diversity and thermodynamic stability. Nat Food 6, 1032–1041 (2025). https://doi.org/10.1038/s43016-025-01253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-025-01253-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing