Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crop pest responses to global changes in climate and land management

Abstract

The prevalence of crop insect pests, which damage crops and reduce their yield, is increasing globally owing to changes in climate and land use, posing a threat to food security. In this Review, we synthesize evidence on how tropical, temperate, migratory and soil crop pests respond to changes in climate, land use and agricultural practices. In general, crop pests are responding to warming with expanded geographic ranges, advanced phenological events and increased number of reproductive generations per year. Increased pest damage under warming is projected to exacerbate yield losses of 46%, 19% and 31% under 2 °C warming for wheat, rice and maize, respectively. Pests at mid–high latitudes respond more positively to warming than those in the tropics. Moderate drought can increase pest damage to crops owing to enhanced feeding on plants as a water source and decreased resilience of plants and natural enemies of pests. Increased precipitation reduces small pests through washing them away, but favours pests in general through buffering thermal-hydro stresses. Land use change, such as deforestation and conversion to cropland, enhances warming and reduces biodiversity, leading to enhanced crop damage. Agricultural intensification, particularly fertilization and irrigation, increases the quality and quantity of host plants and buffers pests from environmental extremes, favouring proliferation. Globalization of trade networks increases pest invasions, with associated damage exceeding US $423 billion in 2019. Future research should examine the mechanisms underlying changes in pest status and develop monitoring and prediction systems to inform management approaches.

Key points

  • Climate warming and associated increasing extreme heat events are shifting tropical and temperate pest risks towards higher latitudes and elevations. Warming and heatwaves are extending the pest damage season, delaying pest diapause onset in warm temperate regions but disrupting diapause and weakening cold tolerance in cool temperate regions.

  • Migratory pests adapt well to global change owing to their high stress tolerances and their migratory behaviour allowing them to track suitable host plants and climate. Soil pests thrive worldwide as soil buffers them from exposure to extreme climates, toxic chemicals and natural predators, and pests can locate optimal thermal and moisture conditions through vertical movement within the soil profile.

  • Agricultural practices, such as irrigation and fertilization, provide pests with optimal host plant conditions, buffer climate stresses and reduce natural biological control through reduced biodiversity, whereas Bt-crop adoption curtails pest population. Land use changes, such as deforestation and cropland expansion, proliferate pests by modifying local climates, creating favourable conditions for pests and disrupting natural enemies, whereas landscape diversification promotes natural pest control.

  • Key pests impacting crops are aphids for wheat and soybean, planthoppers and stem borers for rice, and corn borers, noctuid caterpillars and locusts for maize. Warming promotes wheat pest abundance in the spring, moves rice pest damage from the subtropics to temperate regions and favours maize and soybean pests.

  • Yield losses to crop pests and pesticide use are increasing. However, pests could also decline in the future due to climate extremes, genetically modified crops and climate-smart pesticide applications.

  • Sustainable pest management can be achieved through increasing landscape and biological diversity, developing conservation biological control strategies. Increasing natural enemy biodiversity can help naturally control pest populations and reduce reliance on pesticides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of global change drivers on crop pests and agricultural productivity.
Fig. 2: Global changes in climate, land use and agricultural practices.
Fig. 3: Impact of environmental change on key crop pests.
Fig. 4: Response of four crop pest categories to global change across four global regions.
Fig. 5: Impact of warming on crop pests.
Fig. 6: Response of wheat, rice, maize and soybean pests to warming.

Similar content being viewed by others

References

  1. Gullino, M. L. et al. Scientific Review of the impact of Climate Change on Plant Pests—A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems (FAO, 2021).

  2. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Article  Google Scholar 

  3. Wang, B. X., Hof, A. R. & Ma, C. S. Impacts of climate change on crop production, pests and pathogens of wheat and rice. Front. Agric. Sci. Eng. 9, 4–18 (2022).

    Article  Google Scholar 

  4. Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article  CAS  Google Scholar 

  5. Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    Article  CAS  Google Scholar 

  6. Skendzic, S., Zovko, M., Zivkovic, I. P., Lesic, V. & Lemic, D. The impact of climate change on agricultural insect pests. Insects 12, 440 (2021).

    Article  Google Scholar 

  7. Guo, Y. Y. et al. in Crop Diseases and Insect Pests in China (China Agriculture Press, 2015).

  8. Ma, C. S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article  CAS  Google Scholar 

  9. Bale, J. S. & Hayward, S. A. L. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).

    Article  CAS  Google Scholar 

  10. Xiao, H., Chen, J., Chen, L., Chen, C. & Wu, S. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis. J. Pest Sci. 90, 117–125 (2017).

    Article  Google Scholar 

  11. Chen, C., Xia, Q. W., Fu, S., Wu, X. F. & Xue, F. S. Effect of photoperiod and temperature on the intensity of pupal diapause in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Bull. Entomol. Res. 104, 12–18 (2014).

    Article  Google Scholar 

  12. Huberty, A. F. & Denno, R. F. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383–1398 (2004).

    Article  Google Scholar 

  13. Gely, C., Laurance, S. G. & Stork, N. E. How do herbivorous insects respond to drought stress in trees? Biol. Rev. 95, 434–448 (2020).

    Article  Google Scholar 

  14. Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIRES Clim. Change 5, 317–335 (2014).

    Article  Google Scholar 

  15. Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).

    Article  CAS  Google Scholar 

  16. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    Article  CAS  Google Scholar 

  17. Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).

    Article  Google Scholar 

  18. Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).

    Article  Google Scholar 

  19. Schneider, L., Rebetez, M. & Rasmann, S. The effect of climate change on invasive crop pests across biomes. Curr. Opin. Insect Sci. 50, 100895 (2022).

    Article  Google Scholar 

  20. Habel, J. C., Schmitt, T., Gros, P. & Ulrich, W. Active around the year: butterflies and moths adapt their life cycles to a warming world. Glob. Change Biol. 30, e17103 (2024).

    Article  CAS  Google Scholar 

  21. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  22. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  Google Scholar 

  23. Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015).

    Article  CAS  Google Scholar 

  24. Horgan, F. G., Arida, A., Ardestani, G., Almazan, M. L. P. & Rasmann, S. Positive and negative interspecific interactions between coexisting rice planthoppers neutralise the effects of elevated temperatures. Funct. Ecol. 35, 181–192 (2021).

    Article  Google Scholar 

  25. Furlong, M. J. & Zalucki, M. P. Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 20, 39–44 (2017).

    Article  Google Scholar 

  26. Barton, B. T. & Ives, A. R. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95, 1479–1484 (2014).

    Article  Google Scholar 

  27. Sokame, B. M. et al. Influence of temperature on the interaction for resource utilization between fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and a community of lepidopteran maize stemborers larvae. Insects 11, 73 (2020).

    Article  Google Scholar 

  28. Horgan, F. G., Arida, A., Ardestani, G. & Almazan, M. L. P. Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper. Sci. Rep. 11, 262 (2021).

    Article  CAS  Google Scholar 

  29. Venugopal, P. D. & Dively, G. P. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm. R. Soc. Open. Sci. 4, 170210 (2017).

    Article  Google Scholar 

  30. Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).

    Article  Google Scholar 

  31. da Silva, C. R., Beaman, J. E., Youngblood, J. P., Kellermann, V. & Diamond, S. E. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total Environ. 865, 161049 (2023).

    Article  Google Scholar 

  32. Carrizo, A. E., del Valle Loto, F., Baigori, M. D. & Pera, L. M. Bacillus thuringiensis-based bioproduct: characterization and performance against Spodoptera frugiperda strains in maize under different environmental temperatures. Neotrop. Entomol. 52, 283–291 (2023).

    Article  CAS  Google Scholar 

  33. Berggren, Å., Björkman, C., Bylund, H. & Ayres, M. P. The distribution and abundance of animal populations in a climate of uncertainty. Oikos 118, 1121–1126 (2009).

    Article  Google Scholar 

  34. Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change‐mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).

    Article  Google Scholar 

  35. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article  Google Scholar 

  36. IPCC. Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 1–34 (IPCC, 2023).

  37. Ma, C. S. et al. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 12, 5351 (2021).

    Article  CAS  Google Scholar 

  38. Musolin, D. L. Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob. Change Biol. 13, 1565–1585 (2007).

    Article  Google Scholar 

  39. Zhou, X. L. et al. Effects of temperature on aphid phenology. Glob. Change Biol. 1, 303–313 (1995).

    Article  Google Scholar 

  40. Ma G., Ma C. S., Le Lann C. & van Baaren J. in Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses (eds González-Tokman, D. & Dáttilo, W.) 89–110 (Oxford Univ. Press, 2024).

  41. Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).

    Article  Google Scholar 

  42. Villani, M. G. & Wright, R. J. Environmental influences on soil macroarthropod behavior in agricultural systems. Annu. Rev. Entomol. 35, 249–269 (1990).

    Article  Google Scholar 

  43. Ma, G. & Ma, C. S. Effect of acclimation on heat-escape temperatures of two aphid species: implications for estimating behavioral response of insects to climate warming. J. Insect Physiol. 58, 303–309 (2012).

    Article  CAS  Google Scholar 

  44. Ma, G. & Ma, C. S. Climate warming may increase aphids’ dropping probabilities in response to high temperatures. J. Insect Physiol. 58, 1456–1462 (2012).

    Article  CAS  Google Scholar 

  45. Zhao, F., Hoffmann, A. A., Xing, K. & Ma, C. S. Life stages of an aphid living under similar thermal conditions differ in thermal performance. J. Insect Physiol. 99, 1–7 (2017).

    Article  CAS  Google Scholar 

  46. Liu, Z., Gong, P., Wu, K., Sun, J. & Li, D. A true summer diapause induced by high temperatures in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Insect Physiol. 52, 1012–1020 (2006).

    Article  CAS  Google Scholar 

  47. Zhu, L., Hoffmann, A. A., Li, S. M. & Ma, C. S. Extreme climate shifts pest dominance hierarchy through thermal evolution and transgenerational plasticity. Funct. Ecol. 35, 1524–1537 (2021).

    Article  CAS  Google Scholar 

  48. Zhao, F., Zhang, W., Hoffmann, A. A. & Ma, C. S. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. J. Anim. Ecol. 83, 769–778 (2014).

    Article  Google Scholar 

  49. Ma, G., Rudolf, V. H. & Ma, C. S. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Change Biol. 21, 1794–1808 (2015).

    Article  Google Scholar 

  50. Wu, L. H., Hoffmann, A. A. & Thomson, L. J. Potential impact of climate change on parasitism efficiency of egg parasitoids: a meta-analysis of Trichogramma under variable climate conditions. Agric. Ecosyst. Environ. 231, 143–155 (2016).

    Article  Google Scholar 

  51. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  52. Enjin, A. Humidity sensing in insects—from ecology to neural processing. Curr. Opin. Insect. Sci. 24, 1–6 (2017).

    Article  Google Scholar 

  53. Benoit, J. B., McCluney, K. E., DeGennaro, M. J. & Dow, J. A. T. Dehydration dynamics in terrestrial arthropods: from water sensing to trophic interactions. Annu. Rev. Entomol. 68, 129–149 (2023).

    Article  CAS  Google Scholar 

  54. O’Donnell, M. J. A perspective on insect water balance. J. Exp. Biol. 225, jeb242358 (2022).

    Article  Google Scholar 

  55. Chen, C., Harvey, J. A., Biere, A. & Gols, R. Rain downpours affect survival and development of insect herbivores: the specter of climate change? Ecology 100, e02819 (2019).

    Article  Google Scholar 

  56. Dang, Z. & Chen, F. Responses of insects to rainfall and drought. Chin. J. Entomol. 48, 1161–1169 (2011).

    Google Scholar 

  57. Chang, X., Gao, H., Chen, F. & Zhai, B. Effects of environmental moisture and precipitation on insects: a review. Chin. J. Ecol. 27, 619 (2008).

    Google Scholar 

  58. Sims, S. R. Influence of soil type and rainfall on pupal survival and adult emergence of the fall armyworm (Lepidoptera: Noctuidae) in southern Florida. J. Entomol. Sci. 43, 373–380 (2008).

    Google Scholar 

  59. Shen, X., Guo, J. & Wu, K. Effects of biotic and abiotic factors on flight performance of Ostrinia furnacalis. J. Insect Behav. 34, 240–253 (2021).

    Article  Google Scholar 

  60. Whitney, K. S. et al. Explicit modeling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance. Ecol. Appl. 26, 2598–2608 (2016).

    Google Scholar 

  61. Wu, K. M. & Guo, Y. Y. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. 50, 31–52 (2005).

    Article  CAS  Google Scholar 

  62. Jiang, X., Luo, L., Zhang, L., Sappington, T. W. & Hu, Y. Regulation of migration in Mythimna separata (Walker) in China: a review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environ. Entomol. 40, 516–533 (2011).

    Article  CAS  Google Scholar 

  63. Wen, L. P., Zhou, D. R., Wang, Z. Y. & He, K. I. Effect of water drinking on survival and diapause termination in the Asian corn borer, Ostrinia furnacalis at alternative temperatures. Acta Entomol. Sin. 43, 137–142 (2000).

    Google Scholar 

  64. Godfrey, L. D. & Holtzer, T. O. Influence of temperature and humidity on European corn borer (Lepidoptera: Pyralidae) egg hatchability. Environ. Entomol. 20, 8–14 (1991).

    Article  Google Scholar 

  65. Duan, M. Y. et al. Effects of water deficiency on preference and performance of an insect herbivore Ostrinia furnacalis. Bull. Entomol. Res. 111, 595–604 (2021).

    Article  CAS  Google Scholar 

  66. Macfadyen, S. & Kriticos, D. J. Modelling the geographical range of a species with variable life-history. PLoS ONE 7, e40313 (2012).

    Article  CAS  Google Scholar 

  67. Saska, P. et al. Response of the spring wheat–cereal aphid system to drought: support for the plant vigour hypothesis. J. Pest Sci. 96, 523–537 (2023).

    Article  Google Scholar 

  68. Jamieson, M. A. et al. Global change effects on plant–insect interactions: the role of phytochemistry. Curr. Opin. Insect Sci. 23, 70–80 (2017).

    Article  Google Scholar 

  69. Yadav, B., Jogawat, A., Rahman, M. S. & Narayan, O. P. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Rep. 23, 101040 (2021).

    Article  CAS  Google Scholar 

  70. Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I. & Anderson, J. T. Climate change alters plant–herbivore interactions. New Phytol. 229, 1894–1910 (2020).

    Article  Google Scholar 

  71. Real-Santillán, R. O. et al. Water stress decreases the biocontrol efficacy of a nucleopolyhedrovirus against the fall armyworm on maize. J. Pest Sci. 97, 1–10 (2023).

    Google Scholar 

  72. Toepfer, S., Hatala-Zseller, I., Ehlers, R.-U., Peters, A. & Kuhlmann, U. The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? Agric. For. Entomol. 12, 389–402 (2010).

    Article  Google Scholar 

  73. Bajwa, A. A. et al. Impact of climate change on biology and management of wheat pests. Crop. Prot. 137, 105304 (2020).

    Article  CAS  Google Scholar 

  74. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  75. Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).

    Article  Google Scholar 

  76. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Article  Google Scholar 

  77. Liu, X. X. et al. Protected agriculture matters: year-round persistence of Tuta absoluta in China where it should not. Entomol. Gen. 44, 279–285 (2023).

    Article  Google Scholar 

  78. Xu, Z., Yu, Z. & Zhao, J. Theory and application for the promotion of wheat production in China: past, present and future. J. Sci. Food Agric. 93, 2339–2350 (2013).

    Article  CAS  Google Scholar 

  79. Sheng, J. et al. Crop diversity and land simplification effects on pest damage in northern China. Ann. Entomol. Soc. Am. 110, 91–96 (2017).

    Article  Google Scholar 

  80. Priyadarshana, T. S. et al. Crop and landscape heterogeneity increase biodiversity in agricultural landscapes: a global review and meta‐analysis. Ecol. Lett. 27, e14412 (2024).

    Article  Google Scholar 

  81. Dively, G. P. et al. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc. Natl Acad. Sci. USA 115, 3320–3325 (2018).

    Article  CAS  Google Scholar 

  82. Gassmann, A. J. & Reisig, D. D. Management of insect pests with Bt crops in the United States. Annu. Rev. Entomol. 68, 31–49 (2023).

    Article  CAS  Google Scholar 

  83. Lu, Y. et al. Bt cotton area contraction drives regional pest resurgence, crop loss, and pesticide use. Plant. Biotechnol. J. 20, 390–398 (2022).

    Article  CAS  Google Scholar 

  84. Zhao, L. L. et al. Land use/cover changes in the oriental migratory locust area of China: implications for ecological control and monitoring of locust area. Agric. Ecosyst. Environ. 303, 107110 (2020).

    Article  Google Scholar 

  85. Hu, G. et al. Rice planting systems, global warming and outbreaks of Nilaparvata lugens (Stål). Bull. Entom. Res. 101, 187–199 (2011).

    Article  CAS  Google Scholar 

  86. Liu, T. M., Wang, J. M., Hu, X. K. & Feng, J. M. Land-use change drives present and future distributions of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sci. Total Environ. 706, 135872 (2020).

    Article  CAS  Google Scholar 

  87. Camerini, G., Maini, S. & Riedel, M. Ostrinia nubilalis parasitoids in northern Italy: past and present. Biol. Control. 122, 76–83 (2018).

    Article  Google Scholar 

  88. Hu, Z. et al. Loss of parasitoid diversity in China’s corn agro-ecosystem over a 30-year time period. Biodivers. Conserv. 32, 1309–1325 (2023).

    Article  CAS  Google Scholar 

  89. Mansion‐Vaquié, A., Ferrer, A., Ramon‐Portugal, F., Wezel, A. & Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Entomol. Exp. Appl. 168, 41–52 (2020).

    Article  Google Scholar 

  90. Yousefi, M. et al. The effectiveness of intercropping and agri-environmental schemes on ecosystem service of biological pest control: a meta-analysis. Agron. Sustain. Dev. 44, 15 (2024).

    Article  Google Scholar 

  91. Silva, R. F. et al. The ecology of plant chemistry and multi-species interactions in diversified agroecosystems. Front. Plant. Sci. 9, 1713 (2018).

    Article  Google Scholar 

  92. Eigenbrode, S. D. & Adhikari, S. Climate change and managing insect pests and beneficials in agricultural systems. Agron. J. 115, 2194–2215 (2023).

    Article  CAS  Google Scholar 

  93. Jacobi, V. G., Fernández, P. C. & Zavala, J. A. The stink bug Dichelops furcatus: a new pest of corn that emerges from soybean stubble. Pest. Manag. Sci. 78, 2113–2120 (2022).

    Article  CAS  Google Scholar 

  94. Rowen, E. K., Regan, K. H., Barbercheck, M. E. & Tooker, J. F. Is tillage beneficial or detrimental for insect and slug management? A meta-analysis. Agric. Ecosyst. Environ. 294, 106849 (2020).

    Article  Google Scholar 

  95. Yang, H. et al. Ditch-buried straw return: a novel tillage practice combined with tillage rotation and deep ploughing in rice–wheat rotation systems. Adv. Agron. 154, 257–290 (2019).

    Article  Google Scholar 

  96. Traugott, M., Benefer, C. M., Blackshaw, R. P., van Herk, W. G. & Vernon, R. S. Biology, ecology, and control of elaterid beetles in agricultural land. Annu. Rev. Entomol. 60, 313–334 (2015).

    Article  CAS  Google Scholar 

  97. Frew, A., Barnett, K., Nielsen, U. N., Riegler, M. & Johnson, S. N. Belowground ecology of scarabs feeding on grass roots: current knowledge and future directions for management in Australasia. Front. Plant. Sci. 7, 321 (2016).

    Article  Google Scholar 

  98. Hertl, P. T., Brandenburg, R. L. & Barbercheck, M. E. Effect of soil moisture on ovipositional behavior in the southern mole cricket (Orthoptera: Gryllotalpidae). Environ. Entomol. 30, 466–473 (2001).

    Article  Google Scholar 

  99. Potter, D. A. & Held, D. W. Biology and management of the Japanese beetle. Annu. Rev. Entomol. 47, 175–205 (2002).

    Article  CAS  Google Scholar 

  100. Riis, L. & Esbjerg, P. Movement, distribution, and survival of Cyrtomenus bergi (Hemiptera: Cydnidae) within the soil profile in experimentally simulated horizontal and vertical soil water gradients. Environ. Entomol. 27, 1175–1181 (1998).

    Article  Google Scholar 

  101. McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).

    Article  Google Scholar 

  102. Adalibieke, W., Cui, X., Cai, H., You, L. & Zhou, F. Global crop-specific nitrogen fertilization dataset in 1961–2020. Sci. Data 10, 617 (2023).

    Article  Google Scholar 

  103. Zheng, Y. et al. Nitrogen supply alters rice defense against the striped stem borer Chilo suppressalis. Front. Plant. Sci. 12, 691292 (2021).

    Article  Google Scholar 

  104. Horgan, F. G. et al. Direct and indirect effects of planting density, nitrogenous fertilizer and host plant resistance on rice herbivores and their natural enemies. Agriculture 12, 2053 (2022).

    Article  CAS  Google Scholar 

  105. Cease, A. J. How nutrients mediate the impacts of global change on locust outbreaks. Annu. Rev. Entomol. 69, 527–550 (2024).

    Article  CAS  Google Scholar 

  106. Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop. Prot. 30, 216–221 (2011).

    Article  Google Scholar 

  107. Maggi, F., Tang, F. H., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).

    Article  Google Scholar 

  108. Malaj, E. & Morrissey, C. A. Increased reliance on insecticide applications in Canada linked to simplified agricultural landscapes. Ecol. Appl. 32, e2533 (2022).

    Article  Google Scholar 

  109. Wu, J., Ge, L., Liu, F., Song, Q. & Stanley, D. Pesticide-induced planthopper population resurgence in rice cropping systems. Annu. Rev. Entomol. 65, 409–429 (2020).

    Article  CAS  Google Scholar 

  110. Sargent, R. D., Carrillo, J. & Kremen, C. Common pesticides disrupt critical ecological interactions. Trends Ecol. Evol. 38, 207–210 (2023).

    Article  CAS  Google Scholar 

  111. Liu, J. et al. The joint toxicity of different temperature coefficient insecticides on Apolygus lucorum (Hemiptera: Miridae). J. Econ. Entomol. 109, 1846–1852 (2016).

    Article  CAS  Google Scholar 

  112. Harwood, A. D., You, J. & Lydy, M. J. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ. Toxicol. Chem. 28, 1051–1058 (2009).

    Article  CAS  Google Scholar 

  113. Hooper, M. J. et al. Interactions between chemical and climate stressors: a role for mechanistic  toxicology in assessing climate change risks. Environ. Toxicol. Chem. 32, 32–48 (2013).

    Article  CAS  Google Scholar 

  114. Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest. Manag. Sci. 75, 9–13 (2019).

    Article  CAS  Google Scholar 

  115. Guinet, M. et al. Fostering temporal crop diversification to reduce pesticide use. Nat. Commun. 14, 7416 (2023).

    Article  Google Scholar 

  116. Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 1–4 (2016).

    Article  Google Scholar 

  117. Levine, E., Spencer, J. L., Isard, S. A., Onstad, D. W. & Gray, M. E. Adaptation of the western corn rootworm to crop rotation: evolution of a new strain in response to a management practice. Am. Entomol. 48, 94–107 (2002).

    Article  Google Scholar 

  118. Hulme, P. E. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).

    Article  Google Scholar 

  119. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Article  Google Scholar 

  120. Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).

    Article  CAS  Google Scholar 

  121. IPBES. Summary for policymakers of the thematic assessment of invasive alien species and their control of the Intergovernmental Platform on Biodiversity and Ecosystem Services (eds Roy, H. E. et al.) 1–14 (IPBES, 2023); https://doi.org/10.5281/zenodo.7430692.

  122. Ma, G. & Ma, C. S. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. Curr. Opin. Insect. Sci. 49, 15–21 (2022).

    Article  Google Scholar 

  123. Nyamukondiwa, C. et al. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Curr. Opin. Insect. Sci. 50, 100878 (2022).

    Article  Google Scholar 

  124. Gutierrez, A. P., Ponti, L., Neteler, M., Suckling, D. M. & Cure, J. R. Invasive potential of tropical fruit flies in temperate regions under climate change. Commun. Biol. 4, 1141 (2021).

    Article  Google Scholar 

  125. Liebhold, A. M. et al. Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 12095 (2018).

    Article  Google Scholar 

  126. Mutamiswa, R., Chidawanyika, F. & Nyamukondiwa, C. Dominance of spotted stemborer Chilo partellus Swinhoe (Lepidoptera: Crambidae) over indigenous stemborer species in Africa’s changing climates: ecological and thermal biology perspectives. Agric. For. Entomol. 19, 344–356 (2017).

    Article  Google Scholar 

  127. Feeley, K. J. & Stroud, J. T. Where on Earth are the “tropics”? Front. Biogeogr. 10, e38649 (2018).

    Google Scholar 

  128. Finlayson, B. L., Peel, M. C. & McMahon, T. A. in Encyclopedia of Inland Waters (ed Likens, G. E.) 344–356 (Elsevier, 2009).

  129. Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).

    Article  CAS  Google Scholar 

  130. Piyaphongkul, J., Pritchard, J. & Bale, J. Can tropical insects stand the heat? A case study with the brown planthopper Nilaparvata lugens (Stål). PLoS ONE 7, e29409 (2012).

    Article  CAS  Google Scholar 

  131. Cilas, C., Goebel, F. R., Babin, R. & Avelino, J. in Climate Change and Agriculture Worldwide (ed Torquebiau, E.) 73–82 (Springer, 2016).

  132. Kimura, M. T. Altitudinal migration of insects. Entomol. Sci. 24, 35–47 (2021).

    Article  Google Scholar 

  133. Adati, T. et al. Integrated pest management for cowpea–cereal cropping systems in the West African savannah. Int. J. Trop. Insect Sci. 27, 123 (2007).

    Article  Google Scholar 

  134. Fishpool, L. D. C. & Cheke, R. A. Protracted eclosion and viability of Oedaleus senegalensis (Krauss) eggs (Orthoptera, Acrididae). Entomol. Mon. Mag. 119, 215–219 (1983).

    Google Scholar 

  135. Ofomata, V. C., Overholt, W. A. & Egwuatu, R. I. Diapause termination of Chilo partellus (Swinhoe) and Chilo orichalcociliellus strand (Lepidoptera: Pyralidae). Int. J. Trop. Insect Sci. 19, 187–191 (1999).

    Article  Google Scholar 

  136. Gill, H. K., Goyal, G. & Chahil, G. Insect diapause: a review. J. Agric. Sci. Technol. 7, 454–473 (2017).

    Google Scholar 

  137. Ba, N. M. et al. Seasonal and regional distribution of the cowpea pod borer Maruca vitrata (Lepidoptera: Crambidae) in Burkina Faso. Int. J. Trop. Insect Sci. 29, 109–113 (2009).

    Article  Google Scholar 

  138. Cheke, R. A. et al. A migrant pest in the sahel: the senegalese grasshopper Oedaleus senegalensis. Philos. Trans. R. Soc. B 328, 539–553 (1997).

    Google Scholar 

  139. Maicher, V. et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on mount cameroon. J. Biogeogr. 47, 342–354 (2020).

    Article  Google Scholar 

  140. Waldbauer, G. P. in Evolution of Insect Migration and Diapause (ed Dingle, H.) 127–144 (Springer, 1978).

  141. Jyothi, P. et al. Evidence for facultative migratory flight behavior in Helicoverpa armigera (Noctuidae: Lepidoptera) in India. PLoS ONE 16, e0245665 (2021).

    Article  CAS  Google Scholar 

  142. Ali, M. P. et al. Response of a rice insect pest, Scirpophaga incertulas (Lepidoptera: Pyralidae) in warmer world. BMC Zool. 5, 1–8 (2020).

    Article  Google Scholar 

  143. Mwalusepo, S. et al. Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African mountain gradients using phenology models. PLoS ONE 10, 1–23 (2015).

    Article  Google Scholar 

  144. Krishnan, S. & Chander, S. Simulation of climatic change impact on crop–pest interactions: a case study of rice pink stem borer Sesamia inferens (Walker). Clim. Change 131, 259–272 (2015).

    Article  Google Scholar 

  145. Ali, M. P. et al. Increased temperature induces leaffolder outbreak in rice field. J. Appl. Entomol. 143, 867–874 (2019).

    Article  Google Scholar 

  146. Santana, P. A., Kumar, L., Da Silva, R. S., Pereira, J. L. & Picanço, M. C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest. Manag. Sci. 75, 2706–2715 (2019).

    Article  CAS  Google Scholar 

  147. Yukawa, J. et al. Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl. Entomol. Zool. 44, 429–437 (2009).

    Article  Google Scholar 

  148. Seutchueng, T. G. T., Tchindjang, M., Temegne, N. C., Kamtchoum, S. M. & Fogang, P. K. Effects of rainfall variability on the occurrence of crop pests at foumbot subdivision, west region of Cameroon. Int. J. Plant. Soil. Sci. 34, 110–124 (2022).

    Article  Google Scholar 

  149. Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article  Google Scholar 

  150. Jendritzki, I. et al. Uncertainties in the effectiveness of biological control of stem borers under different climate change scenarios in Eastern Africa. Clim. Change 176, 56 (2023).

    Article  CAS  Google Scholar 

  151. Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Article  Google Scholar 

  152. del Pliego, P. G. et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol. Conserv. 201, 385–395 (2016).

    Article  Google Scholar 

  153. Bradshaw, W. E. & Holzapfel, C. M. in Low Temperature Biology of Insects (eds Denlinger, D. L. & Lee, R. E.) 242–275 (Cambridge Univ. Press, 2010).

  154. Hodek, I. Diapause development, diapause termination and the end of diapause. Eur. J. Entomol. 93, 475–487 (1996).

    Google Scholar 

  155. Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).

    Article  CAS  Google Scholar 

  156. Gu, S. et al. Climate change favours a destructive agricultural pest in temperate regions: late spring cold matters. J. Pest Sci. 91, 1191–1198 (2018).

    Article  Google Scholar 

  157. Diffenbaugh, N. S., Krupke, C. H., White, M. A. & Alexander, C. E. Global warming presents new challenges for maize pest management. Environ. Res. Lett. 3, 1–9 (2008).

    Article  Google Scholar 

  158. Halsch, C. A. et al. Insects and recent climate change. Proc. Natl Acad. Sci. USA 118, e2002543117 (2021).

    Article  CAS  Google Scholar 

  159. Lindestad, O., von Schmalensee, L., Lehmann, P. & Gotthard, K. Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold. Funct. Ecol. 34, 1029–1040 (2020).

    Article  Google Scholar 

  160. Fantinou, A. A., Kourti, A. T. & Saitanis, C. J. Photoperiodic and temperature effects on the intensity of larval diapause in Sesamia nonagrioides. Physiol. Entomol. 28, 82–87 (2003).

    Article  Google Scholar 

  161. Bradshaw, W. E. & Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl Acad. Sci. USA 98, 14509–14511 (2001).

    Article  CAS  Google Scholar 

  162. Honek, A., Martinkova, Z. & Pekár, S. How climate change affects the occurrence of a second generation in the univoltine Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Ecol. Entomol. 45, 1172–1179 (2020).

    Article  Google Scholar 

  163. Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).

    Article  Google Scholar 

  164. Numata, H. & Shintani, Y. Diapause in univoltine and semivoltine life cycles. Annu. Rev. Entomol. 68, 257–276 (2023).

    Article  CAS  Google Scholar 

  165. von Schmalensee, L., Süess, P., Roberts, K. T., Gotthard, K. & Lehmann, P. A quantitative model of temperature-dependent diapause progression. Proc. Natl Acad. Sci. USA 121, e2407057121 (2024).

    Article  Google Scholar 

  166. Denlinger, D. L. in Insects at Low Temperature (ed. Lee, R. E. & Denlinger, D. L.) 174–198 (Springer, 1991).

  167. Williams, C. M., Henry, H. A. & Sinclair, B. J. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214–235 (2015).

    Article  Google Scholar 

  168. Denlinger, D. L. Insect diapause: from a rich history to an exciting future. J. Exp. Biol. 226, jeb245329 (2023).

    Article  Google Scholar 

  169. Ma, G. et al. Soil moisture conditions determine phenology and success of larval escape in the peach fruit moth, Carposina sasakii (Lepidoptera, Carposinidae): implications for predicting drought effects on a diapausing insect. Appl. Soil Ecol. 110, 65–72 (2017).

    Article  Google Scholar 

  170. Zhang, R. et al. Straw return enhances grain yield and quality of three main crops: evidence from a meta-analysis. Front. Plant. Sci. 15, 1433220 (2024).

    Article  Google Scholar 

  171. Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).

    Article  CAS  Google Scholar 

  172. Drake, V. & Farrow, R. The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol. 33, 183–210 (1988).

    Article  Google Scholar 

  173. Hu, G. et al. Insect migration: individual behaviour, population dynamics and ecological consequences. Bull. Natl. Nat. Sci. Found. Chin. 34, 456–463 (2020).

    Google Scholar 

  174. Wu, Q. et al. Migration patterns and winter population dynamics of rice planthoppers in Indochina: new perspectives from field surveys and atmospheric trajectories. Agric. For. Meteorol. 265, 99–109 (2019).

    Article  Google Scholar 

  175. Terblanche, J. S., Clusella-Trullas, S. & Lehmann, P. How climate change might impact insect movement via physiological mechanisms. One Earth 7, 608–622 (2024).

    Article  Google Scholar 

  176. Hu, G. et al. Mass seasonal bioflows of high-flying insect migrants. Science 354, 1584–1587 (2016).

    Article  CAS  Google Scholar 

  177. Menz, M. H. et al. Mechanisms and consequences of partial migration in insects. Front. Ecol. Evol. 7, 403 (2019).

    Article  Google Scholar 

  178. Jiang, X., Zhang, L., Cheng, Y. & Luo, L. Novel features, occurrence trends and economic impact of the oriental armyworm, Mythimna separata (Walker) in China. Chin. J. Entomol. 51, 881–889 (2014).

    CAS  Google Scholar 

  179. Meynard, C. N., Lecoq, M., Chapuis, M. P. & Piou, C. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Glob. Change Biol. 26, 3753–3755 (2020).

    Article  Google Scholar 

  180. Wu, R. et al. Predictions based on different climate change scenarios: the habitat of typical locust species is shrinking in Kazakhstan and Xinjiang. China. Insects 13, 942 (2022).

    Article  CAS  Google Scholar 

  181. Ørskov, C. K., Tregenza, T. & Overgaard, J. Using radiotelemetry to study behavioural thermoregulation in insects under field conditions. Methods Ecol. Evol. 10, 1773–1782 (2019).

    Article  Google Scholar 

  182. Salih, A. A. M., Baraibar, M., Mwangi, K. K. & Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Change 10, 584–585 (2020).

    Article  Google Scholar 

  183. Liu, X., Zhang, D. & He, X. Unveiling the role of climate in spatially synchronized locust outbreak risks. Sci. Adv. 10, eadj1164 (2024).

    Article  Google Scholar 

  184. Tu, X. et al. Mass windborne migrations extend the range of the migratory locust in East China. Agric. For. Entomol. 22, 41–49 (2020).

    Article  Google Scholar 

  185. Peng, W. et al. A review of historical and recent locust outbreaks: links to global warming, food security and mitigation strategies. Environ. Res. 191, 110046 (2020).

    Article  CAS  Google Scholar 

  186. Zhang, Z. et al. Periodic temperature-associated drought/flood drives locust plagues in China. Proc. Biol. Sci. 276, 823–831 (2009).

    Google Scholar 

  187. Ackonor, J. B. Laboratory studies on the impact of drought on egg development, survival and hatchling weight in Locusta migratoria migratorioides (Reiche and Fairmaire). Int. J. Trop. Insect Sci. 10, 639–643 (1989).

    Article  Google Scholar 

  188. Sparks, T., Roy, D. & Dennis, R. The influence of temperature on migration of Lepidoptera into Britain. Glob. Change Biol. 11, 507–514 (2005).

    Article  Google Scholar 

  189. Blossey, B. & Hunt-Joshi, T. R. Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu. Rev. Entomol. 48, 521–547 (2003).

    Article  CAS  Google Scholar 

  190. Zhang, H., Yuan, N., Ma, Z. & Huang, Y. Understanding the soil temperature variability at different depths: effects of surface air temperature, snow cover, and the soil memory. Adv. Atmos. Sci. 38, 493–503 (2021).

    Article  Google Scholar 

  191. Wang, X. et al. Soil temperature change and its regional differences under different vegetation regions across China. Int. J. Climatol. 41, E2310–E2320 (2021).

    Article  Google Scholar 

  192. García-García, A. et al. Soil heat extremes can outpace air temperature extremes. Nat. Clim. Change 13, 1237–1241 (2023).

    Article  Google Scholar 

  193. Yang, Y. et al. Climate change exacerbates the environmental impacts of agriculture. Science 385, eadn3747 (2024).

    Article  CAS  Google Scholar 

  194. Nikoukar, A. & Rashed, A. Integrated pest management of wireworms (Coleoptera: Elateridae) and the rhizosphere in agroecosystems. Insects 13, 769 (2022).

    Article  Google Scholar 

  195. Meinke, L. J. et al. Western corn rootworm (Diabrotica virgifera virgifera LeConte) population dynamics. Agric. For. Entomol. 11, 29–46 (2009).

    Article  Google Scholar 

  196. Zhao, L. et al. Outbreak mechanism of locust plagues under dynamic drought and flood environments based on time series remote eensing data: implication for identifying potential high-risk locust areas. Remote. Sens. 15, 5206 (2023).

    Article  Google Scholar 

  197. Levine, E. L. I., Oloumi-Sadeghi, H. & Ellis, C. R. Thermal requirements, hatching patterns, and prolonged diapause in western corn rootworm (Coleoptera: Chrysomelidae) eggs. J. Econ. Entomol. 85, 2425–2432 (1992).

    Article  Google Scholar 

  198. Wang, X. et al. The effect of environmental changes on locust outbreak dynamics in the downstream area of the Yellow River during the Ming and Qing Dynasties. Sci. Total Environ. 877, 162921 (2023).

    Article  CAS  Google Scholar 

  199. Amizhthini, S. et al. Global species diversity, bioecology and management of white grubs in crops: a review. Int. J. Trop. Insect Sci. 44, 1–27 (2024).

    Article  Google Scholar 

  200. Rashed, A. & van Herk, W. G. Pest elaterids of North America: new insights and opportunities for management. Annu. Rev. Entomol. 69, 1–20 (2024).

    Article  CAS  Google Scholar 

  201. Endo, C. The underground life of the oriental mole cricket: an analysis of burrow morphology. J. Zool. 273, 414–420 (2007).

    Article  Google Scholar 

  202. Hiltpold, I. et al. in Advances in Insect Physiology Vol. 45 (eds Johnson, S. N., Hiltpold, I. & Turlings, T. C. J.) 97–157 (Elsevier, 2013).

  203. Toepfer, S. & Kuhlmann, U. in Western Corn Rootworm: Ecology and Management (eds Vidal, S., Kuhlmann, U. & Edwards, C. R.) 95–119 (CABI, 2005).

  204. Furlan, L. The biology of Agriotes sordidus Illiger (Col., Elateridae). J. Appl. Entomol. 128, 696–706 (2004).

    Article  Google Scholar 

  205. Susanto, A. et al. Effect of various depths of pupation on adult emergence of interspecific hybrid of Bactrocera carambolae and Bactrocera dorsalis. Sci. Rep. 12, 4235 (2022).

    Article  CAS  Google Scholar 

  206. Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J. & Bohn, M. O. Adaptation and invasiveness of western corn rootworm: intensifying research on a worsening pest. Annu. Rev. Entomol. 54, 303–321 (2009).

    Article  CAS  Google Scholar 

  207. Prestwich, K. N. & O’Sullivan, K. Simultaneous measurement of metabolic and acoustic power and the efficiency of sound production in two mole cricket species (Orthoptera: Gryllotalpidae). J. Exp. Biol. 208, 1495–1512 (2005).

    Article  Google Scholar 

  208. Lv, H. et al. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest. Glob. Change Biol. 29, 2655–2668 (2023).

    Article  CAS  Google Scholar 

  209. Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article  CAS  Google Scholar 

  210. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  211. Yue, Y., Zhang, P. & Shang, Y. The potential global distribution and dynamics of wheat under multiple climate change scenarios. Sci. Total Environ. 688, 1308–1318 (2019).

    Article  CAS  Google Scholar 

  212. Wang, J., Vanga, S. K., Saxena, R., Orsat, V. & Raghavan, V. Effect of climate change on the yield of cereal crops: a review. Climate 6, 41 (2018).

    Article  Google Scholar 

  213. Eigenbrode, S. D., Macfadyen, S. & Langridge, P. in Achieving Sustainable Cultivation of Wheat (ed. Langridge, P.) 545–567 (Burleigh Dodds, 2017).

  214. Farook, U. B. et al. A review on insect pest complex of wheat (Triticum aestivum L.). J. Entomol. Zool. Stud. 7, 1292–1298 (2019).

    Google Scholar 

  215. Shrestha, G. & Reddy, G. V. P. in Advances in Understanding Insect Pests Affecting Wheat and Other Cereals (eds Eigenbrode, S. D. & Rashed, A.) 79–91 (Burleigh Dodds, 2023).

  216. Tougeron, K., Damien, M., Le Lann, C., Brodeur, J. & Van Baaren, J. Rapid responses of winter aphid–parasitoid communities to climate warming. Front. Ecol. Evol. 6, 173 (2018).

    Article  Google Scholar 

  217. Wu, Y., Li, J., Liu, H., Qiao, G. & Huang, X. Investigating the impact of climate warming on phenology of aphid pests in China using long-term historical data. Insects 11, 167 (2020).

    Article  Google Scholar 

  218. Ma, C. S., Wang, L., Zhang, W. & Rudolf, V. H. Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. Oikos 127, 622–633 (2018).

    Article  Google Scholar 

  219. Andrade, T. O. et al. Spatiotemporal variations in aphid–parasitoid relative abundance patterns and food webs in agricultural ecosystems. Ecosphere 6, 1–14 (2015).

    Article  Google Scholar 

  220. Jego, L. et al. Parasitoid ecology along geographic gradients: lessons for climate change studies. Curr. Opin. Insect Sci. 57, 101036 (2023).

    Article  Google Scholar 

  221. Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl Acad. Sci. USA 101, 9971–9975 (2004).

    Article  CAS  Google Scholar 

  222. Li, S. et al. Changes in planting methods will change the potential distribution of rice in South China under climate warming. Agric. For. Meteorol. 331, 109355 (2023).

    Article  Google Scholar 

  223. Chen, C. et al. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Sec. 24, 100359 (2020).

    Article  Google Scholar 

  224. Pathak, M. D. & Khan, Z. R. in Insect Pests of Rice (eds Pathak, M. D. & Khan, Z. R.) 5–27 (International Rice Research Institute, 1994).

  225. Hu, C., Wei, G. & Hou, M. Influences of future climate warming on overwintering boundary of the brown planthopper. Plant. Prot. 39, 21–25 (2013).

    Google Scholar 

  226. Horgan, F. G., Arida, A., Ardestani, G. & Almazan, M. L. P. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS ONE 15, e0235506 (2020).

    Article  CAS  Google Scholar 

  227. Shi, P. et al. Population decrease of Scirpophaga incertulas Walker (Lepidoptera Pyralidae) under climate warming. Ecol. Evol. 2, 58–64 (2012).

    Article  Google Scholar 

  228. Yamamura, K., Yokozawa, M., Nishimori, M., Ueda, Y. & Yokosuka, T. How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Popul. Ecol. 48, 31–48 (2006).

    Article  Google Scholar 

  229. Luo, G. H. et al. The response to flooding of two overwintering rice stem borers likely accounts for their changing impacts. J. Pest Sci. 94, 451–461 (2021).

    Article  Google Scholar 

  230. Dai, C., Zhong, Y., Yu, J., Cheng, Y. & Hou, M. Behavioral and physiological adaptation to soil moisture in the overwintering larvae of the rice stem borer in the subtropics. Agriculture 13, 2177 (2023).

    Article  CAS  Google Scholar 

  231. Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    Article  CAS  Google Scholar 

  232. Hartman, G. L., West, E. D. & Herman, T. K. Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 3, 5–17 (2011).

    Article  Google Scholar 

  233. Ramirez-Cabral, N. Y. Z., Kumar, L. & Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 7, 5910 (2017).

    Article  Google Scholar 

  234. St-Marseille, A.-F. G., Bourgeois, G., Brodeur, J. & Mimee, B. Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agric. For. Meteorol. 264, 178–187 (2019).

    Article  Google Scholar 

  235. Feng, L., Wang, H., Ma, X., Peng, H. & Shan, J. Modeling the current land suitability and future dynamics of global soybean cultivation under climate change scenarios. Field Crop. Res. 263, 108069 (2021).

    Article  Google Scholar 

  236. Dicke, F. F. & Guthrie, W. D. in Corn and Corn Improvement (eds Sprague, G. F. & Dudley, J. W.) 767–867 (American Society of Agronomy, 1988).

  237. Day, R. et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).

    Article  Google Scholar 

  238. Heinrichs, E. A. & Muniappan, R. Integrated pest management for tropical crops: soyabeans. CABI Rev. 78, 1–44 (2018).

    Google Scholar 

  239. Gao, Y., Shi, S., Xu, M. & Cui, J. Current research on soybean pest management in China. Oil Crop. Sci. 3, 215–227 (2018).

    Google Scholar 

  240. Popović, Ž. D. et al. Acclimations to cold and warm conditions differently affect the energy metabolism of diapausing larvae of the European corn borer Ostrinia nubilalis (Hbn.). Front. Physiol. 12, 768593 (2021).

    Article  Google Scholar 

  241. Huang, L. et al. Diapause incidence and critical day length of Asian corn borer (Ostrinia furnacalis) populations exhibit a latitudinal cline in both pure and hybrid strains. J. Pest Sci. 93, 559–568 (2020).

    Article  Google Scholar 

  242. Gagnon, A. È., Bourgeois, G., Bourdages, L., Grenier, P. & Blondlot, A. Impact of climate change on Ostrinia nubilalis (Lepidoptera: Crambidae) phenology and its implications on pest management. Agric. For. Entomol. 21, 253–264 (2019).

    Article  Google Scholar 

  243. Pazos, P. et al. Corn borers (Lepidoptera: Noctuidae; Crambidae) in northwestern Spain: population dynamics and distribution. Maydica 52, 195–203 (2007).

    Google Scholar 

  244. Wang, L. X. et al. Evolutionary shift of insect diapause strategy in a warming climate: an intra-population evidence from Asian corn borer. Biology 12, 762 (2023).

    Article  Google Scholar 

  245. Xie, H., Zhao, H., Sun, Y., Wang, X. & Lin, X. Effect of elevated CO2 and temperature on maize resistance against the Asian corn borer. J. Appl. Entomol. 146, 990–1002 (2022).

    Article  CAS  Google Scholar 

  246. Showers, W. B. Migratory ecology of the black cutworm. Annu. Rev. Entomol. 42, 393–425 (1997).

    Article  CAS  Google Scholar 

  247. Fu, X. & Wu, K. Responses of migratory insects to global climate change. Sci. Agric. Sin. 18, 1–15 (2015).

    Google Scholar 

  248. Zeng, J. et al. Global warming modifies long-distance migration of an agricultural insect pest. J. Pest Sci. 93, 569–581 (2020).

    Article  Google Scholar 

  249. Zhu, J., Li, B. P. & Meng, L. Simulation and prediction of potential distribution of Helicoverpa armigera in China under global warming. Chin. J. Ecol. 30, 1382–1387 (2011).

    Google Scholar 

  250. Ouyang, F. et al. Early eclosion of overwintering cotton bollworm moths from warming temperatures accentuates yield loss in wheat. Agric. Ecosyst. Environ. 217, 89–98 (2016).

    Article  Google Scholar 

  251. Roach, S. H. & Hopkins, A. R. Heliothis spp.: behavior of prepupae and emergence of adults from different soils at different moisture levels. Environ. Entomol. 8, 388–391 (1979).

    Article  Google Scholar 

  252. Jiang, Y., Li, C., Zeng, J. & Liu, J. Population dynamics of the armyworm in China: a review of the past 60 years’ research. J. Appl. Entomol. 51, 890–898 (2014).

    Google Scholar 

  253. Le Cointe, R., Plantegenest, M. & Poggi, S. Wireworm management in conservation agriculture. Arthropod-Plant Interact. 17, 421–427 (2023).

    Article  Google Scholar 

  254. Crossley, M. S. et al. Precipitation change accentuates or reverses temperature effects on aphid dispersal. Ecol. Appl. 32, e2593 (2022).

    Article  Google Scholar 

  255. Liu, D. et al. Effects of heat wave on development, reproduction, and morph differentiation of Aphis glycines (Hemiptera: Aphididae). Environ. Entomol. 52, 939–948 (2023).

    Article  Google Scholar 

  256. Lemic, D. et al. Monitoring techniques of the western corn rootworm are the precursor to effective IPM strategies. Pest. Manag. Sci. 72, 405–417 (2016).

    Article  CAS  Google Scholar 

  257. Riedell, W. E. & Sutter, G. R. Soil moisture and survival of western corn rootworm larvae in field plots. J. Kans. Entomol. Soc. 68, 80–84 (1995).

    Google Scholar 

  258. Musolin, D. L., Tougou, D. & Fujisaki, K. Too hot to handle? Phenological and life‐history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Glob. Change Biol. 16, 73–87 (2010).

    Article  Google Scholar 

  259. Zhu, L., Wang, L. & Ma, C. S. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. J. Insect Physiol. 112, 48–56 (2019).

    Article  CAS  Google Scholar 

  260. Oyekunle, M. et al. Efficacy of drought-tolerant and insect-protected transgenic TELA maize traits in Nigeria. Transgenic Res. 32, 169–178 (2023).

    Article  CAS  Google Scholar 

  261. Wang, S., Guo, Y., Fu, Y. & Liu, Y. Phenological synchrony between summer maize and the Asian corn borer. Sci. Sin. 51, 462–471 (2021).

    Google Scholar 

  262. Regan, K. H., Voortman, C. A., Wallace, J. M. & Barbercheck, M. E. Prevalence of early- and late-season pest damage to corn in cover crop-based reduced-tillage organic systems. Environ. Entomol. 49, 865–875 (2020).

    Article  Google Scholar 

  263. Feusthuber, E., Mitter, H., Schönhart, M. & Schmid, E. Integrated modelling of efficient crop management strategies in response to economic damage potentials of the western corn rootworm in Austria. Agric. Syst. 157, 93–106 (2017).

    Article  Google Scholar 

  264. Alarcón-Segura, V., Grass, I., Breustedt, G., Rohlfs, M. & Tscharntke, T. Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. J. Appl. Ecol. 59, 1513–1523 (2022).

    Article  Google Scholar 

  265. Pierre, J. F. et al. A review of the impact of maize-legume intercrops on the diversity and abundance of entomophagous and phytophagous insects. PeerJ 11, e15640 (2023).

    Article  Google Scholar 

  266. Jerez, P. G. P., Hill, J. G., Pereira, E. J. G., Alzogaray, R. A. & Vera, M. T. Ten years of Cry1Ac Bt soybean use in Argentina: historical shifts in the community of target and non-target pest insects. Crop. Prot. 170, 106265 (2023).

    Article  Google Scholar 

  267. Huang, F. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: lessons and implications for Bt corn IRM in China. Insect Sci. 28, 574–589 (2021).

    Article  CAS  Google Scholar 

  268. García, M., García-Benítez, C., Ortego, F. & Farinós, G. P. Monitoring insect resistance to Bt maize in the European Union: update, challenges, and future prospects. J. Econ. Entomol. 116, 275–288 (2023).

    Article  Google Scholar 

  269. Kamminga, K., Koppel, A. L., Herbert Jr, D. A. & Kuhar, T. P. Biology and management of the green stink bug. J. Integr. Pest. Manag. 3, C1–C8 (2012).

    Article  Google Scholar 

  270. Nboyine, J. A. et al. Field efficacy of genotypically diverse soybean (Glycine max (L.) Merrill) cultivar mixtures in controlling insect pests. Int. J. Trop. Insect Sci. 41, 2755–2763 (2021).

    Article  Google Scholar 

  271. Damien, M. et al. Change in plant phenology during winter increases pest control but not trophic link diversity. Agric. Ecosyst. Environ. 247, 418–425 (2017).

    Article  Google Scholar 

  272. Della Rocca, F. & Milanesi, P. The spread of the Japanese beetle in a European human-dominated landscape: high anthropization favors colonization of Popillia japonica. Diversity 14, 658 (2022).

    Article  Google Scholar 

  273. Ramsden, M. W., Kendall, S. L., Ellis, S. A. & Berry, P. M. A review of economic thresholds for invertebrate pests in UK arable crops. Crop. Prot. 96, 30–43 (2017).

    Article  Google Scholar 

  274. Adhikari, S. & Menalled, F. D. Supporting beneficial insects for agricultural sustainability: the role of livestock-integrated organic and cover cropping to enhance ground beetle (Carabidae) communities. Agronomy 10, 1210 (2020).

    Article  Google Scholar 

  275. Beuzelin, J. M., Meszaros, A., Way, M. O. & Reagan, T. E. Rice harvest cutting height and ratoon crop effects on late season and overwintering stem borer (Lepidoptera: Crambidae) infestations. Crop. Prot. 34, 47–55 (2012).

    Article  Google Scholar 

  276. Bottrell, D. G. & Schoenly, K. G. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia. Pac. Entomol. 15, 122–140 (2012).

    Article  Google Scholar 

  277. Arias-Martín, M., Haidukowski, M., Farinós, G. P. & Patiño, B. Role of Sesamia nonagrioides and Ostrinia nubilalis as vectors of Fusarium spp. and contribution of corn borer-resistant Bt maize to mycotoxin reduction. Toxins 13, 780 (2021).

    Article  Google Scholar 

  278. Martins-Salles, S., Machado, V., Massochin-Pinto, L. & Fiuza, L. M. Genetically modified soybean expressing insecticidal protein (Cry1Ac): management risk and perspectives. Facets 2, 496–512 (2017).

    Article  Google Scholar 

  279. Wu, K., Jiang, C., Zhou, S. & Yang, H. Optimizing arrangement and density in maize and alfalfa intercropping and the reduced incidence of the invasive fall armyworm (Spodoptera frugiperda) in southern China. Field Crop. Res. 287, 108637 (2022).

    Article  Google Scholar 

  280. Brust, G. E. & King, L. R. Effects of crop rotation and reduced chemical inputs on pests and predators in maize agroecosystems. Agric. Ecosyst. Environ. 48, 77–89 (1994).

    Article  Google Scholar 

  281. Rozen‐Rechels, D. et al. When water interacts with temperature: ecological and evolutionary implications of thermo‐hydroregulation in terrestrial ectotherms. Ecol. Evol. 9, 10029–10043 (2019).

    Article  Google Scholar 

  282. Van Klink, R. et al. Emerging technologies revolutionise insect ecology and monitoring. Trends Ecol. Evol. 37, 872–885 (2022).

    Article  Google Scholar 

  283. Grünig, M. et al. Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere 12, e03791 (2021).

    Article  Google Scholar 

  284. Kiobia, D. O. et al. A review of successes and impeding challenges of IoT-based insect pest detection systems for estimating agroecosystem health and productivity of cotton. Sensors 23, 4127 (2023).

    Article  Google Scholar 

  285. Zhang, J. et al. Monitoring plant diseases and pests through remote sensing technology: a review. Comput. Electron. Agric. 165, 104943 (2019).

    Article  Google Scholar 

  286. Pongnumkul, S., Chaovalit, P. & Surasvadi, N. Applications of smartphone‐based sensors in agriculture: a systematic review of research. J. Sens. 2015, 195308 (2015).

    Article  Google Scholar 

  287. Gardiner, M. M. & Roy, H. E. The role of community science in entomology. Annu. Rev. Entomol. 67, 437–456 (2022).

    Article  CAS  Google Scholar 

  288. Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294 (2018).

    Article  Google Scholar 

  289. Newell, F. L., Ausprey, I. J. & Robinson, S. K. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Glob. Change Biol. 29, 308–323 (2023).

    Article  CAS  Google Scholar 

  290. Möhring, N., Finger, R. & Dalhaus, T. Extreme heat reduces insecticide use under real field conditions. Sci. Total Environ. 819, 152043 (2022).

    Article  Google Scholar 

  291. Khumairoh, U., Lantinga, E. A., Handriyadi, I., Schulte, R. P. O. & Groot, J. C. J. Agro-ecological mechanisms for weed and pest suppression and nutrient recycling in high yielding complex rice systems. Agric. Ecosyst. Environ. 313, 107385 (2021).

    Article  CAS  Google Scholar 

  292. Lao, A. R., Aviso, K. B., Cabezas, H. & Tan, R. R. Maintaining the productivity of co-culture systems in the face of environmental change. Nat. Sustain. 5, 749–752 (2022).

    Article  Google Scholar 

  293. Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present (C3S CDS, 2019); https://doi.org/10.24381/cds.68d2bb30.

  294. Sandstad, M., Schwingshackl, C. & Iles, C. Climate extreme indices and heat stress indicators derived from CMIP6 global climate projections (C3S CDS, 2022); https://doi.org/10.24381/cds.776e08bd.

  295. Ludemann, C. I., Gruere, A., Heffer, P. & Dobermann, A. Global data on fertilizer use by crop and by country. Sci. Data 9, 1–8 (2022).

    Article  Google Scholar 

  296. Pagad, S. et al. Country compendium of the global register of introduced and invasive species. Sci. Data 9, 391 (2022).

    Article  Google Scholar 

  297. Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Y.-C. Xu, D.-X. Li, H.-C. Chang, W.-J. Kong, X. Wen, L. Zhu and J. S. Terblanche for their support during the writing process. The authors also thank the National Natural Science Foundation of China (32330090, 32471597, 32401314), National Key R&D Program of China (2022YFD1400400, 2023YFD1401400), Hebei Natural Science Foundation (C2022201042), Chinese Agrosystem Long-Term Observation Network (CALTON-SWZH), Fundamental Research Funds of CAAS (Y2024JC02), IRP “GRADIENTS” project from CNRS, and USDA/NRCS (award no. NR233A750004G038) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.-S.M. led the review, conceptualized, wrote the main text, prepared displays (Table 1 and Fig. 1) and compiled the paper. G.M., B.-X.W., X.-J.W., Q.-C.L. and C.-S.M. collected the literature, wrote the draft text and Supplementary Information, and prepared Figs. 26. W.Z., X.-F.Y., J.v.B., M.P.Z, D.P.B., S.D.E. and J.Z. contributed to content discussion and writing. All authors contributed to the manuscript preparation, discussion and writing before submission.

Corresponding authors

Correspondence to Bing-Xin Wang, Xue-Jing Wang, Qing-Cai Lin or Gang Ma.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Andrew Norton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AgbioInvestor: https://gm.agbioinvestor.com/downloads

AQUASTAT: https://data.apps.fao.org/aquastat/?lang=en&share=f-91c2a291-aa8b-4a89-af8b-cf7504526d84

FAOSTAT1: http://www.fao.org/faostat/es/#data/QC/visualize

FAOSTAT2: https://data.apps.fao.org/catalog/dataset/pesticides-indicators-national-global-annual-faostat

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, CS., Wang, BX., Wang, XJ. et al. Crop pest responses to global changes in climate and land management. Nat Rev Earth Environ 6, 264–283 (2025). https://doi.org/10.1038/s43017-025-00652-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00652-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing