Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global dust impacts on biogeochemical cycles and climate

Abstract

Windblown mineral dust is a nutrient source to the ocean, influencing global ocean productivity, ocean carbon uptake and climate. In this Review, we examine how dust emission fluxes, sources and compositions have changed over the past 7 Myr and consider the implications for ocean productivity. Since the Late Cenozoic, global cooling and orogenic uplift have enhanced dust emissions from major source regions and fluxes to downwind ocean basins, with the associated nutrient supply varying with dust origin. Glacially derived Asian dust contains higher concentrations of ferrous iron (typically exceeding 30% of the total iron) and phosphorus than the aged, highly oxidized mineral dust from North Africa, which has negligible ferrous iron content. Indeed, Asian dust has a notable influence on Pacific Ocean productivity and, potentially, climate. For example, Middle Pleistocene increases in the content of Asian dust Fe2+ (~45%) and P (~55%) coincided with a threefold to fivefold rise in glacial productivity in the South China Sea and a concurrent shift in phytoplankton ecology in the lower-latitude North Pacific. Therefore, decreasing glaciogenic dust–nutrient supply under continued global warming could notably impact ocean productivity, especially in the Pacific Ocean. Future research should focus on constraining the composition and bioavailability of dust-derived nutrients across a wide range of globally important dust sources so that dust composition and related feedbacks can be better parameterized in Earth system models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global dust sources, transport paths and emission and deposition fluxes.
Fig. 2: Nutrient concentration and composition, and grain size distribution over major global dust sources.
Fig. 3: Late Cenozoic aeolian dust fluxes in major ocean basins and their links to climate variability.
Fig. 4: Strontium–neodymium (Sr–Nd) isotopic cross-plots and potential dust source areas and transport pathways.
Fig. 5: Nutrient limitation and net primary production in the global ocean.
Fig. 6: Dust fluxes, ocean productivity and carbon cycling in the North Pacific and Southern Ocean in the geological past.
Fig. 7: The role of mineral dust in modulating the global carbon cycle and climate.

Similar content being viewed by others

Data availability

All data are available through refs. 2,11,12,16,24,25,30,31,35,36,55,88,90,91,113,116,118,119,144,149,152,153,154,155,156,157,158,160,161,163,169,170,171 and are publicly available from the website at: https://www.ncei.noaa.gov/products/paleoclimatology.

References

  1. Maher, B. A. et al. Global connections between eolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci. Rev. 99, 61–97 (2010).

    Article  CAS  Google Scholar 

  2. Kok, J. F. et al. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 4, 71–86 (2023).

    Article  Google Scholar 

  3. Shao, Y. et al. Dust cycle: an emerging core theme in Earth system science. Aeolian Res. 2, 181–204 (2011).

    Article  Google Scholar 

  4. Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).

    Article  CAS  Google Scholar 

  5. Mahowald, N. Aerosol Indirect Effect on Biogeochemical Cycles and Climate. Science 334, 794–796 (2011).

    Article  CAS  Google Scholar 

  6. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry and climate. Science 308, 67–71 (2005).

    Article  CAS  Google Scholar 

  7. Martínez-Garcia, A. et al. Southern Ocean dust–climate coupling over the past four million years. Nature 476, 312–315 (2011).

    Article  Google Scholar 

  8. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).

    Article  CAS  Google Scholar 

  9. Scanza, R. et al. Modeling dust as component minerals in the community atmosphere model: development of framework and impact on radiative forcing. Atmos. Chem. Phys. 15, 537–561 (2015).

    Article  Google Scholar 

  10. Zan, J. B. et al. Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization. Proc. Natl Acad. Sci. USA 120, e2304773120 (2023).

    Article  CAS  Google Scholar 

  11. Schroth, A. W., Crusius, J., Sholkovitz, E. R. & Bostick, B. C. Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci. 2, 337–340 (2009).

    Article  CAS  Google Scholar 

  12. Shoenfelt, E. M. et al. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom. Sci. Adv. 3, e1700314 (2017).

    Article  Google Scholar 

  13. Shoenfelt, E. M., Winckler, G., Annett, A. L., Hendry, K. R. & Bostick, B. C. Physical weathering intensity controls bioavailable primary iron (II) silicate content in major global dust sources. Geophys. Res. Lett. 46, 10854–10864 (2019).

    Article  CAS  Google Scholar 

  14. Hawkings, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).

    Article  CAS  Google Scholar 

  15. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).

    Article  Google Scholar 

  16. Kok, J. et al. Improved representation of the global dust cycle using observational constraints on dust properties and abundance. Atmos. Chem. Phys. 21, 8127–8167 (2021).

    Article  CAS  Google Scholar 

  17. Lu, H. et al. Formation and evolution of Gobi Desert in central and eastern Asia. Earth Sci. Rev. 194, 251–263 (2019).

    Article  Google Scholar 

  18. An, Z. S., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since Late Miocene times. Nature 411, 62–66 (2001).

    Article  CAS  Google Scholar 

  19. Sun, Y. B. et al. Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth Sci. Rev. 200, 102963 (2020).

    Article  CAS  Google Scholar 

  20. Wu, F. et al. Reorganization of Asian climate in relation to Tibetan plateau uplift. Nat. Rev. Earth Environ. 3, 684–700 (2022).

    Article  Google Scholar 

  21. Ding, L. et al. Timing and mechanisms of Tibetan plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).

    Article  Google Scholar 

  22. Xiong, S., Ding, Z., Zhu, Y., Zhou, R. & Lu, H. A 6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess–red clay deposit. Quat. Sci. Rev. 29, 1911–1922 (2010).

    Article  Google Scholar 

  23. Washington, R. et al. Links between topography, wind, deflation, lakes and dust: the case of the Bodele Depression, Chad. Geophys. Res. Lett. 33, L09401 (2006).

    Article  Google Scholar 

  24. Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).

    Article  CAS  Google Scholar 

  25. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  CAS  Google Scholar 

  26. Huang, J. P. et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 113, D23212 (2008).

    Article  Google Scholar 

  27. Uno, I. et al. Asian dust transported one full circuit around the globe. Nat. Geosci. 2, 557–560 (2009).

    Article  CAS  Google Scholar 

  28. Sun, J. M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett. 203, 845–859 (2002).

    Article  CAS  Google Scholar 

  29. Mahowald, N. M. et al. Aerosol trace metal leaching and impacts on marine microorganisms. Nat. Commun. 9, 2614 (2018).

    Article  Google Scholar 

  30. Wu, C. et al. Description of dust emission parameterization in CAS-ESM2 and its simulation of global dust cycle and East Asian dust events. J. Adv. Model. Earth Sy. 13, e2020MS002456 (2021).

    Article  Google Scholar 

  31. Molina Catricheo, C. A., Lambert, F., Salomon, J. & Wout, E. Modeling global surface dust deposition using physics-informed neural networks. Commun. Earth Environ. 5, 778 (2024).

    Article  Google Scholar 

  32. Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 106, 20255–20273 (2001).

    Article  Google Scholar 

  33. Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006).

    Article  Google Scholar 

  34. Engelstaedter, S., Tegen, I. & Washington, R. North African dust emissions and transport. Earth Sci. Rev. 79, 73–100 (2006).

    Article  Google Scholar 

  35. Abouchami, W. et al. Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin. Earth Planet. Sci. Lett. 380, 112–123 (2013).

    Article  CAS  Google Scholar 

  36. Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).

    Article  CAS  Google Scholar 

  37. Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).

  38. Zhang, X., An, Z. & Arimoto, R. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 102, 28041–28047 (1997).

    Article  CAS  Google Scholar 

  39. Husar, R. B. et al. Asian dust events of April 1998. J. Geophys. Res. Atmos. 106, 18317–18330 (2001).

    Article  CAS  Google Scholar 

  40. Sun, J. M., Zhang, M. Y. & Liu, T. S. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J. Geophys. Res. Atmos. 106, 10325–10333 (2001).

    Article  Google Scholar 

  41. Li, L. et al. Uranium isotope constraints on the pre-deposition time of Asian dust to the North Pacific Ocean: implications for provenance and iron supply. Geophys. Res. Lett. 51, e2023GL107820 (2024).

    Article  Google Scholar 

  42. Jiang, Q. & Yang, X. Sedimentological and geochemical composition of aeolian sediments in the Taklamakan Desert: implications for provenance and sediment supply mechanisms. J. Geophys. Res. Earth Surf. 124, 1217–1237 (2019).

    Article  CAS  Google Scholar 

  43. Chen, J. & Li, G. J. Geochemical studies on the source region of Asian dust. Sci. China Earth Sci. 54, 1279–1301 (2011).

    Article  CAS  Google Scholar 

  44. Bullard, J., Baddock, M., McTainsh, G. & Leys, J. Sub-basin scale dust source geomorphology detected using MODIS. Geophys. Res. Lett. 35, L1504 (2008).

    Article  Google Scholar 

  45. Bullard, J. E. & McTainsh, G. H. Aeolian-fluvial interactions in dryland environments: examples, concepts and Australia case study. Prog. phys. Geogr. 27, 471–501 (2003).

    Article  Google Scholar 

  46. Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. Atmos. 111, D10202 (2006).

    Google Scholar 

  47. Albani, S. et al. Paleodust variability since the last glacial maximum and implications for iron inputs to the ocean. Geophys. Res. Lett. 43, 3944–3954 (2016).

    Article  CAS  Google Scholar 

  48. Lunt, D. J. & Valdes, P. J. Dust deposition and provenance at the Last Glacial Maximum and present day. Geophys. Res. Lett. 29, 2085 (2002).

    Article  Google Scholar 

  49. Bauer, E. & Ganopolski, A. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles. Clim. Past 10, 1333–1348 (2014).

    Article  Google Scholar 

  50. Sudarchikova, N. et al. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica. Clim. Past 11, 765–779 (2015).

    Article  Google Scholar 

  51. Sow, M., Alfaro, S. C., Rajot, J. L. & Marticorena, B. Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 9, 3881–3891 (2009).

    Article  CAS  Google Scholar 

  52. Engelstaedter, S. & Washington, R. Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res. Atmos. 112, D03103 (2007).

    Article  Google Scholar 

  53. Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).

    Article  Google Scholar 

  54. Claquin, T., Schulz, M., Balkanski, Y. & Boucher, O. Uncertainties in assessing radiative forcing by mineral dust. Tellus Ser. B Chem. Phys. Meteorol. 50, 491–505 (1998).

    Article  Google Scholar 

  55. Johansen, A. M., Siefert, R. L. & Hoffmann, M. R. Chemical composition of aerosols collected over the tropical North Atlantic ocean. J. Geophys. Res. Atmos. 105, 15277–15312 (2000).

    Article  CAS  Google Scholar 

  56. He, X. et al. Global patterns and drivers of soil total phosphorus concentration. Earth Syst. Sci. Data 13, 5831–5846 (2021).

    Article  Google Scholar 

  57. Neuer, S. et al. Dust deposition pulses to the eastern subtropical North Atlantic gyre: does ocean’s biogeochemistry respond? Glob. Biogeochem. Cycles 18, GB4020 (2004).

    Article  Google Scholar 

  58. Houlton, B. Z., Monford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’ s surface environment. Science 62, 58–62 (2018).

    Article  Google Scholar 

  59. Cwiertny, D. M. et al. Characterization and acid-mobilization study of iron-containing mineral dust source materials. J. Geophys. Res. Atmos. 113, D05202A (2008).

    Article  Google Scholar 

  60. Journet, E., Desbouefs, K., Caqineau, S. & Colin, J. L. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35, L07805 (2008).

    Article  Google Scholar 

  61. Shi, Z. et al. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing. Glob. Biogeochem. Cycles 25, GB2010 (2011).

    Article  Google Scholar 

  62. Lu, W. et al. Iron mineralogy and speciation in clay-sized fractions of Chinese desert sediments. J. Geophys. Res. Atmos. 122, 13458–13471 (2017).

    Article  CAS  Google Scholar 

  63. Koven, C. D. & Fung, I. Inferring dust composition from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data. J. Geophys. Res. Atmos. 111, D14205 (2006).

    Article  Google Scholar 

  64. Schwertmann, U. & Taylor, R. M. Iron Oxides 2nd edn (Soil Science Society of America, 1987).

  65. Koffman, B. G. et al. Glacial dust surpasses both volcanic ash and desert dust in its iron fertilization potential. Glob. Biogeochem. Cycles 35, e2020GB006821 (2021).

    Article  CAS  Google Scholar 

  66. Buck, C. S., Landing, W. M., Resing, J. A. & Lebon, G. T. Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise. Geochem. Geophys. Geosyst. 7, Q04M07 (2006).

    Article  Google Scholar 

  67. Buck, C., Landing, W., Resing, J. & Measures, C. The solubility and deposition of aerosol Fe and other trace elements in the North Atlantic Ocean: observations from the A16N CLIVAR/CO2 repeat hydrography section. Mar. Chem. 120, 57–70 (2010).

    Article  CAS  Google Scholar 

  68. Baker, A. R., Li, M. & Chance, R. Trace metal fractional solubility in size-segregated aerosols from the tropical eastern Atlantic Ocean. Glob. Biogeochem. Cycles 34, e2019GB006510 (2020).

    Article  CAS  Google Scholar 

  69. Conway, T. M. et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun. 10, 2628 (2019).

    Article  Google Scholar 

  70. Kurisu, M., Adachi, K., Sakata, K. & Takahashi, Y. Stable isotope ratios of combustion iron produced by evaporation in a steel plant. ACS Earth Space Chem. 3, 588–598 (2019).

    Article  CAS  Google Scholar 

  71. Fitzsimmons, J. N. & Conway, T. Novel insights into marine iron biogeochemistry from iron isotopes. Annu. Rev. Mar. Sci. 15, 383–406 (2023).

    Article  Google Scholar 

  72. Newman, A. C. D. The Chemical Constitution of Clays 1–128 (Mineralogical Society, 1987).

  73. Jeong, G. Y. Microanalysis and mineralogy of Asian and Saharan dust. J. Anal. Sci. Technol. 15, 10 (2024).

    Article  Google Scholar 

  74. Takahashi, Y., Higashi, M., Furukawa, T. & Mitsunobu, S. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmos. Chem. Phys. 11, 11237–11252 (2011).

    Article  CAS  Google Scholar 

  75. Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments — a compilation. Earth Sci. Rev. 116, 170–194 (2013).

    Article  CAS  Google Scholar 

  76. Kandler, K. et al. Differences and similarities of Central Asian, African, and Arctic dust composition from a single particle perspective. Atmosphere 11, 269 (2020).

    Article  CAS  Google Scholar 

  77. Formenti, P. et al. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 11, 8231–8256 (2011).

    Article  CAS  Google Scholar 

  78. Jeong, G. Y. & Achterberg, E. P. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys. 14, 12415–12428 (2014).

    Article  Google Scholar 

  79. Cunningham, D., Davies, S. & McLean, D. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: implications for the crustal evolution of the Gobi Altai region. J. Geol. Soc. 166, 321–333 (2009).

    Article  Google Scholar 

  80. Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    Article  Google Scholar 

  81. Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    Article  CAS  Google Scholar 

  82. Garzanti, E. et al. Congo River sand and the equatorial quartz factory. Earth Sci. Rev. 197, 102918 (2019).

    Article  CAS  Google Scholar 

  83. Bakker, N. L., Drake, N. A. & Bristow, C. S. Evaluating the relative importance of African mineral dust sources using remote sensing. Atmos. Chem. Phys. 19, 10525–10535 (2019).

    Article  CAS  Google Scholar 

  84. Liang, W. D. & Hu, X. M. Research progress of sand composition in modern river sediment. Acta Geol. Sin. 97, 2975–2991 (2023).

    Google Scholar 

  85. Bunnell, Z. B. et al. The influence of natural, anthropogenic, and wildfire sources on iron and zinc aerosols delivered to the North Pacific Ocean. Geophys. Res. Lett. 52, e2024GL11387 (2025).

    Article  Google Scholar 

  86. Conway, T. M. & John, S. G. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511, 212–215 (2014).

    Article  CAS  Google Scholar 

  87. Eglinton, T. I. et al. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem. Geophys. Geosyst. 3, 1–27 (2002).

    Article  Google Scholar 

  88. van der Does, M., Pourmand, A., Sharifi, A. & Stuut, J. W. North African mineral dust across the tropical Atlantic ocean: insights from dust particle size, radiogenic Sr–Nd–Hf isotopes and rare earth elements (REE). Aeolian Res. 33, 106–116 (2018).

    Article  Google Scholar 

  89. Matzenbacher, B. A., Brummer, G. J. A., Prins, M. A. & Stuut, J. B. W. High-resolution sampling in the eastern tropical North Atlantic reveals episodic Saharan dust deposition: implications for the marine carbon sink. Front. Mar. Sci. 11, 1367786 (2024).

    Article  Google Scholar 

  90. Rea, D. K. & Janecek, T. R. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar. Geol. 49, 149–167 (1982).

    Article  Google Scholar 

  91. Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geological history of wind. Rev. Geophys. 32, 159–195 (1994).

    Article  Google Scholar 

  92. Baker, A. & Jickells, T. Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 33, L17608 (2006).

    Article  Google Scholar 

  93. Hand, J. et al. Estimates of soluble iron from observations and a global mineral aerosol model:biogeochemical implications. J. Geophys. Res. Atmos.  109, D17205 (2004).

    Article  Google Scholar 

  94. Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014).

    Article  Google Scholar 

  95. Rea, D. K., Snoeckx, H. & Joseph, L. H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13, 215–224 (1998).

    Article  Google Scholar 

  96. Janecek, T. R. Eolian sedimentation in the northwest Pacific Ocean: a preliminary examination of the data from deep sea drilling project sites 576 and 578. Init. Rep. DSDP 86, 589–603 (1985).

    Google Scholar 

  97. Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).

    Article  Google Scholar 

  98. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  CAS  Google Scholar 

  99. Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317, 8–19 (2012).

    Article  Google Scholar 

  100. Lang, D. C. et al. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quat. Sci. Rev. 93, 125–141 (2014).

    Article  Google Scholar 

  101. Cerling, T. E. Development of grasslands, savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).

    Article  Google Scholar 

  102. Clemens, S. C., Murray, D. W. & Prell, W. L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943–948 (1996).

    Article  CAS  Google Scholar 

  103. Tang, Y. et al. Northward shift of the Northern Hemisphere westerlies in the early to late Miocene and its links to Tibetan uplift. Geophys. Res. Lett. 49, e2022GL099311 (2022).

    Article  Google Scholar 

  104. Hovan, S. A., Rea, D. K., Pisias, N. G. & Shackleton, N. J. A direct link between the China loess and marine δ18O records: aeolian flux to the North Pacific. Nature 340, 296–298 (1989).

    Article  Google Scholar 

  105. Janecek, T. R. & Rea, D. K. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation. GSA Bull. 94, 730–738 (1983).

    Article  Google Scholar 

  106. Lee, A. M. F., Maruyama, A., Lu, S., Yamashita, Y. & Irino, T. Quantification of Asian Dust Source Variabilities in Silt and Clay Fractions since 10 Ma by Parallel Factor (PARAFAC) endmember modeling at IODP site U1425 in the Japan Sea. Lithosphere 2022, 6818103 (2022).

    Article  Google Scholar 

  107. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).

    Article  CAS  Google Scholar 

  108. Sun, D., An, Z., Shaw, J., Bloemendal, J. & Sun, Y. Magnetostratigraphy and palaeoclimatic significance of late tertiary aeolian sequences in the Chinese Loess Plateau. Geophys. J. Int. 134, 207–212 (1998).

    Article  CAS  Google Scholar 

  109. Wang, X. et al. Early Pleistocene climate in western arid central Asia inferred from loess–Palaeosol sequences. Sci. Rep. 6, 20560 (2016).

    Article  CAS  Google Scholar 

  110. Zan, J. et al. Intensified Northern Hemisphere glaciation facilitates continuous accumulation of late Pliocene loess on the western margin of the Pamir. Geophys. Res. Lett. 49, e2022GL099629.

  111. Qiang, X. et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Ser. Earth Sci. 54, 136–144 (2011).

    Article  CAS  Google Scholar 

  112. Ding, Z. L., Derbyshire, E., Yang, S. L., Sun, J. M. & Liu, T. S. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth Planet. Sci. Lett. 237, 45–55 (2005).

    Article  CAS  Google Scholar 

  113. Zhang, W., Chen, J., Ji, J. & Li, G. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene. Aeolian Res. 23, 11–20 (2016).

    Article  Google Scholar 

  114. Ding, Z. L. et al. The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet. Sci. Lett. 200, 387–400 (2002).

    Article  CAS  Google Scholar 

  115. Fang, X. M. et al. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proc. Natl Acad. Sci. USA 117, 24729–24734 (2020).

    Article  CAS  Google Scholar 

  116. Clark, P. U., Shakun, J. D., Rosenthal, Y., Kohler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).

    Article  CAS  Google Scholar 

  117. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  CAS  Google Scholar 

  118. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  CAS  Google Scholar 

  119. LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).

    Article  CAS  Google Scholar 

  120. Zan, J. B. et al. Mid-Pleistocene aridity and landscape shifts promoted Palearctic hominin dispersals. Nat. Commun. 15, 10279 (2024).

    Article  CAS  Google Scholar 

  121. Jiang, F. et al. Increased dust deposition in the Parece Vela basin since the mid-Pleistocene inferred from radiogenic Sr and Nd isotopes. Glob. Planet. Change 173, 83–95 (2019).

    Article  Google Scholar 

  122. Nakai, S., Halliday, A. N. & Rea, D. K. Provenance of dust in the Pacific Ocean. Earth Planet. Sci. Lett. 119, 143–157 (1993).

    Article  CAS  Google Scholar 

  123. Stancin, A. M. et al. Radiogenic isotopic mapping of late Cenozoic eolian and hernipelagic sediment distribution in the east-central Pacific. Earth Planet. Sci. Lett. 248, 840–850 (2006).

    Article  CAS  Google Scholar 

  124. Hovan, S. A. Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the eastern equatorial Pacific, Leg 138. Proc. Ocean Drill. Program Sci. Results 138, 615–625 (1995).

    Google Scholar 

  125. Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).

    Article  CAS  Google Scholar 

  126. Weber, M. E. et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years. Nat. Commun. 13, 2044 (2022).

    Article  CAS  Google Scholar 

  127. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article  CAS  Google Scholar 

  128. Sugden, D. E., McCulloch, R. D., Bory, A. J. M. & Hein, A. S. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nat. Geosci. 2, 281–285 (2009).

    Article  CAS  Google Scholar 

  129. Maher, B. A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quat. Sci. Rev. 154, 23–84 (2016).

    Article  Google Scholar 

  130. Sun, J. M. et al. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene. Glob. Planet. Chang. 197, 103395 (2021).

    Article  Google Scholar 

  131. Adams, A. M., Prospero, J. M. & Zhang, C. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Clim. 25, 6862–6879 (2012).

    Article  Google Scholar 

  132. Muhs, D. R. The geologic records of dust in the quaternary. Aeolian Res. 9, 3–48 (2013).

    Article  Google Scholar 

  133. van der Does, M. et al. Tropical rains controlling deposition of Saharan dust across the North Atlantic Ocean. Geophys. Res. Lett. 47, e2019GL086867 (2020).

    Article  Google Scholar 

  134. Moulin, C., Lambert, C. E., Dulac, F. & Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 387, 691–694 (1997).

    Article  CAS  Google Scholar 

  135. Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc. Natl Acad. Sci. USA 96, 3396–3403 (1999).

    Article  CAS  Google Scholar 

  136. Klose, M., Shao, Y., Karremann, M. K. & Fink, A. H. Sahel dust zone and synoptic background. Geophys. Res. Lett. 37, L09802 (2010).

    Article  Google Scholar 

  137. Knippertz, P. & Todd, M. C. The central west Saharan dust hotspot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res. Atmos. 115, D12117 (2010).

    Article  Google Scholar 

  138. Hsu, S. C. et al. Dust transport from non-East Asian sources to the North Pacific. Geophys. Res. Lett. 39, L12804 (2012).

    Article  Google Scholar 

  139. Liu, Q., Huang, Z., Hu, Z., Dong, Q. & Li, S. Long-range transport and evolution of Saharan dust over East Asia from 2007 to 2020. J. Geophys. Res. Atmos. 127, e2022JD036974 (2022).

    Article  Google Scholar 

  140. Jung, S. J. A., Davies, G. R., Ganssen, G. M. & Kroon, D. Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth Planet. Sci. Lett. 221, 27–37 (2004).

    Article  CAS  Google Scholar 

  141. Jeandel, C., Arsouze, T., Lacan, F., Téchiné, P. & Dutay, J. C. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins. Chem. Geol. 239, 156–164 (2007).

    Article  Google Scholar 

  142. Yao, Z. et al. Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma. Nat. Commun. 14, 829 (2023).

    Article  CAS  Google Scholar 

  143. Zhang, Q. et al. East Asian winter monsoon intensification over the Northwest Pacific Ocean driven by late Miocene atmospheric CO2 decline. Sci. Adv. 10, eadm8270 (2024).

    Article  CAS  Google Scholar 

  144. Seo, I., Lee, Y. I., Yoo, C. M., Kim, H. J. & Hyeong, K. Sr–Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: implications for the transport mechanism of Asian dust. J. Geophys. Res. Atmos. 119, 11492–11504 (2014).

    Article  CAS  Google Scholar 

  145. Seo, I., Lee, Y. I., Kim, W., Yoo, C. M. & Hyeong, K. Movement of the Intertropical Convergence Zone during the mid-Pleistocene transition and the response of atmospheric and surface ocean circulations in the central equatorial pacific. Geochem. Geophys. Geosyst. 16, 3973–3981 (2015).

    Article  Google Scholar 

  146. Kang, J., Zan, J. B., Fang, X. M., Zhnag, W. L. & Azamdzhon, M. Amplified dust cycle in central Asia linked to desert expansion and environmental transformations since 1980. Catena 260, 109421 (2025).

    Article  Google Scholar 

  147. Rashki, A. et al. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer — The July 2016 case. Aeolian Res. 36, 27–44 (2019).

    Article  Google Scholar 

  148. Basile, I. et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 146, 573–589 (1997).

    Article  Google Scholar 

  149. Barkley, A. E. et al. Patagonian dust, Agulhas current, and Antarctic ice-rafted debris contributions to the South Atlantic Ocean over the past 150,000 years. Proc. Natl Acad. Sci. USA 121, e2402120121 (2024).

    Article  CAS  Google Scholar 

  150. Aarons, S. M., Aciego, S. M. & Gleason, J. D. Variable Hf–Sr–Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: implications for dust flux to oceans, ice sheets and the terrestrial biosphere. Chem. Geol. 349–350, 18–26 (2013).

    Article  Google Scholar 

  151. Grousset, F. E. & Biscaye, P. E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem. Geol. 222, 149–167 (2005).

    Article  CAS  Google Scholar 

  152. Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).

    Article  CAS  Google Scholar 

  153. Pourmand, A., Prospero, J. M. & Sharifi, A. Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr–Nd–Hf isotopes and rare earth element anomalies. Geology 42, 675–678 (2014).

    Article  CAS  Google Scholar 

  154. Goswami, V., Singh, S. K., Bhushan, R. & Rai, V. K. Temporal variations in 87Sr/86Sr and εNd in sediments of the southeastern Arabian Sea: impact of monsoon and surface water circulation. Geochem. Geophys. Geosyst. 13, Q01001 (2012).

    Article  Google Scholar 

  155. Khim, B. K. et al. Detrital Sr–Nd isotopes, sediment provenances and depositional processes in the Laxmi Basin of the Arabian Sea during the last 800 ka. Geol. Mag. 157, 895–907 (2020).

    Article  CAS  Google Scholar 

  156. Kunkelova, T. et al. Dust sources in westernmost Asia have a different geochemical fingerprint to those in the Sahara. Quat. Sci. Rev. 294, 107717 (2022).

    Article  Google Scholar 

  157. Padoan, M., Garzanti, E., Harlavan, Y. & Villa, I. M. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta 75, 3627–3644 (2011).

    Article  CAS  Google Scholar 

  158. Suresh, K., Singh, U., Kumar, A., Karri, D. & Ramaswamy, V. Provenance tracing of long-range transported dust over the northeastern Arabian Sea during the southwest monsoon. Atmos. Res. 250, 105377 (2021).

    Article  Google Scholar 

  159. Tindale, N. W. & Pease, P. P. Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt. Deep Sea Res. 46, 1577–1595 (1999).

    Article  CAS  Google Scholar 

  160. Bory, A. J. M., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).

    Article  Google Scholar 

  161. Pettke, T., Halliday, A. N., Hall, C. M. & Rea, D. K. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth Planet. Sci. Lett. 178, 397–413 (2000).

    Article  CAS  Google Scholar 

  162. Blank, M., Leinen, M. & Prospero, J. M. Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature 314, 84–86 (1985).

    Article  CAS  Google Scholar 

  163. Chen, J. et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochim. Cosmochim. Acta 71, 3904–3914 (2007).

    Article  CAS  Google Scholar 

  164. Xu, Z. et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment. Geochem. Geophys. Geosyst. 16, 3182–3196 (2015).

    Article  Google Scholar 

  165. Badejo, A. O., Seo, I., Kim, W., Hyeong, K. & Ju, S. J. Effect of eolian Fe-supply change on the phytoplankton productivity and community in central equatorial Pacific Ocean during the Pleistocene: a lipid biomarker approach. Org. Geochem. 112, 170–176 (2017).

    Article  CAS  Google Scholar 

  166. Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D. & Mahowald, N. Covariant glacial interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320, 93–96 (2008).

    Article  CAS  Google Scholar 

  167. Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).

    Article  CAS  Google Scholar 

  168. Lunt, D. J. & Valdes, P. J. Dust transport to dome C, Antarctica, at the last glacial maximum and present day. Geophys. Res. Lett. 28, 295–298 (2001).

    Article  Google Scholar 

  169. Delmonte, B. et al. Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quat. Sci. Rev. 29, 256–264 (2010).

    Article  Google Scholar 

  170. Delmonte, B. et al. Comparing the Epica and Vostok dust records during the last 220, 000 years: stratigraphical correlation and provenance in glacial periods. Earth Sci. Rev. 66, 63–87 (2004).

    Article  Google Scholar 

  171. Gaiero, D. M. Dust provenance in Antarctic ice during glacial periods: from where in southern South America? Geophys. Res. Lett. 34, L17707 (2007).

    Article  Google Scholar 

  172. Kok, J. F. et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 21, 8169–8193 (2021).

    Article  CAS  Google Scholar 

  173. Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).

    Article  CAS  Google Scholar 

  174. Mills, M. et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).

    Article  CAS  Google Scholar 

  175. Dai, M. et al. Upper ocean biogeochemistry of the oligotrophic North Pacific subtropical gyre: from nutrient sources to carbon export. Rev. Geophys. 61, e2022RG000800 (2023).

    Article  Google Scholar 

  176. Ryan-Keogh, T. J., Thomalla, S. J., Chang, N. & Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 15, 4829–4848 (2023).

    Article  Google Scholar 

  177. Meng, X. L. et al. Impact of dust deposition on phytoplankton biomass in the Northwestern Pacific: a long-term study from 1998 to 2020. Sci. Total Environ. 813, 152536 (2022).

    Article  CAS  Google Scholar 

  178. Yoon, J. E. et al. Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-a concentrations in the western North Pacific Ocean. Geophys. Res. Lett. 44, 1474–1482 (2017).

    Article  CAS  Google Scholar 

  179. Zhai, L. et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago. Geol. Mag. 157, 818–828 (2020).

    Article  CAS  Google Scholar 

  180. Zhang, C. et al. Phytoplankton growth response to Asian dust addition in the Northwest Pacific Ocean versus the yellow Sea. Biogeosciences 15, 749–765 (2018).

    Article  CAS  Google Scholar 

  181. Tan, S. et al. Satellite-observed transport of dust to the East China Sea and the North Pacific Subtropical Gyre: contribution of dust to the increase in chlorophyll during Spring 2010. Atmosphere 7, 152 (2016).

    Article  Google Scholar 

  182. Chu, Q. et al. Promotion effect of Asian dust on phytoplankton growth and potential dissolved organic phosphorus utilization in the South China Sea. J. Geophys. Res. Biogeosci. 123, 1101–1116 (2018).

    Article  CAS  Google Scholar 

  183. Wang, S. H. et al. Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea? Geophys. Res. Lett. 39, L05811 (2012).

    Google Scholar 

  184. Boyd, P. et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–553 (2004).

    Article  CAS  Google Scholar 

  185. Tsuda, A. et al. Evidence for the grazing hypothesis: grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic pacific (SEEDS II). J. Oceanogr. 63, 983–994 (2007).

    Article  Google Scholar 

  186. de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightenment. J. Geophys. Res. Oceans 110, C09S16 (2005).

    Google Scholar 

  187. Gu, Z. Y., Ding, Z., Xiong, S. & Liu, T. A seven million geochemical record from Chinese red clay and loess-paleosol sequence: weathering and erosion in northwestern China. Quat. Sci. 19, 357–365 (1999).

    Google Scholar 

  188. Wang, R. et al. Quaternary biogenic opal records in the South China Sea: linkages to East Asian monsoon, global ice volume and orbital forcing. Sci. China Ser. D Earth Sci. 50, 710–724 (2007).

    Article  Google Scholar 

  189. Sigman, D. M., Jaccard, S. L. & Haug, G. H. Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004).

    Article  CAS  Google Scholar 

  190. Zhang, Q., Liu, Q., Li, J. & Sun, Y. An integrated study of the eolian dust in pelagic sediments from the North Pacific Ocean based on environmental magnetism, transmission electron microscopy, and diffuse reflectance spectroscopy. J. Geophys. Res. Solid Earth 123, 3358–3376 (2018).

  191. Chen, T., Liu, Q. S., Roberts, A. P., Shi, X. F. & Zhang, Q. A test of the relative importance of iron fertilization from aeolian dust and volcanic ash in the stratified high-nitrate low-chlorophyll subarctic Pacific Ocean. Quat. Sci. Rev. 248, 106577 (2020).

    Article  Google Scholar 

  192. Abell, J. T. & Winckler, G. Long-term variability in Pliocene North Pacific Ocean export production and its implications for ocean circulation in a warmer world. AGU Adv. 4, e2022AV000853 (2023).

    Article  Google Scholar 

  193. Murray, R. W., Leinen, M. & Knowlton, C. W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean. Nat. Geosci. 5, 270–274 (2012).

    Article  CAS  Google Scholar 

  194. Winckler, G., Anderson, R. F., Jaccard, S. L. & Marcantonio, F. Ocean dynamics, not dust, have controlled equatorial pacific productivity over the past 500,000 years. Proc. Natl Acad. Sci. USA 113, 6119–6124 (2016).

    Article  CAS  Google Scholar 

  195. Loveley, M. R. et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years. Nat. Geosci. 10, 760–764 (2017).

    Article  CAS  Google Scholar 

  196. Kumar, N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–680 (1995).

    Article  CAS  Google Scholar 

  197. Jaccard, S. L. et al. Two modes of change in southern ocean productivity over the past million years. Science 339, 1419–1423 (2013).

    Article  CAS  Google Scholar 

  198. Martínez-Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, PA1207 (2009).

    Article  Google Scholar 

  199. Weis, J. et al. One-third of Southern Ocean productivity is supported by dust deposition. Nature 629, 603–608 (2024).

    Article  CAS  Google Scholar 

  200. Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. & Law, C. S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–733 (2000).

    Article  CAS  Google Scholar 

  201. Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 424 (2020).

    Article  CAS  Google Scholar 

  202. Bishop, J. K. B., Davis, R. E. & Sherman, J. T. Robotic observations on dust storm enhancement of carbon biomass in the North Pacific. Science 298, 817–821 (2002).

    Article  CAS  Google Scholar 

  203. Zhang, P. Z., Molnar, P. & Downs, W. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).

    Article  Google Scholar 

  204. Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

    Article  CAS  Google Scholar 

  205. Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Article  CAS  Google Scholar 

  206. Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618–632 (2022).

    Article  Google Scholar 

  207. Li, D. F. et al. The competing controls of glaciers, precipitation, and vegetation on high-mountain fluvial sediment yields. Sci. Adv. 10, eads6196 (2024).

    Article  CAS  Google Scholar 

  208. Li, L. et al. In-situ silt generation in the Taklimakan Desert evidenced by uranium isotopes. J. Geophys. Res. Atmos. 127, e2022JD036435 (2022).

    Article  CAS  Google Scholar 

  209. Wang, S. W., Zan, J. B., Heller, F., Fang, X. M. & Liu, X. M. Dynamic coupling between intensified physical erosion and Asian dust activity under late Cenozoic global cooling. Geophys. Res. Lett. 51, e2024GL110717 (2024).

    Article  Google Scholar 

  210. Lu, H., Wang, X. & Li, L. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geo. Soc. Lond. Spec. Pub. 342, 29–44 (2010).

    Article  Google Scholar 

  211. Wang, N. & Zhang, Y. Y. Long-term variations of global dust emissions and climate control. Environ. Pollut. 340, 122847 (2024).

    Article  CAS  Google Scholar 

  212. Mahowald, N. M. & Luo, C. A less dusty future? Geophys. Res. Lett. 30, 1903 (2003).

    Article  Google Scholar 

  213. Evan, A., Flamant, C., Gaetani, M. & Guichard, F. The past, present and future of African dust. Nature 531, 493–495 (2016).

    Article  CAS  Google Scholar 

  214. Liu, J. et al. Impact of Arctic amplification on declining spring dust events in East Asia. Clim. Dyn. 54, 1913–1935 (2020).

    Article  Google Scholar 

  215. Zhu, C., Wang, B. & Qian, W. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett. 35, L18702 (2008).

    Article  Google Scholar 

  216. Huang, X., Oberhänsli, H., von Suchodoletz, H. & Sorrel, P. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years. Quat. Sci. Rev. 30, 3661–3674 (2011).

    Article  Google Scholar 

  217. Speer, M. S. Dust storm frequency and impact over Eastern Australia determined by state of Pacific climate system. Weather. Clim. Extrem. 2, 16–21 (2013).

    Article  Google Scholar 

  218. Chadwick, O., Derry, L., Vitousek, P., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    Article  CAS  Google Scholar 

  219. Porder, S., Vitousek, P. M., Chadwick, O. A., Chamberlain, P. & Hilley, G. E. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).

    Article  CAS  Google Scholar 

  220. Swap, R., Garstang, M., Greco, S., Talbot, R. & Kållberg, P. Saharan dust in the Amazon Basin. Tellus B 44, 133–149 (1992).

    Article  Google Scholar 

  221. Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 42, 1984–1991 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Young Scientists Fund (Category A) of the National Natural Science Foundation of China (42525207), the Excellent Research Group for Tibetan Plateau Earth System (42588201) and the National Key Research and Development Program of China (Grant No. 2023YFF0804500) for financial support. The authors also thank Z. Ma and S. Wang from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, for their assistance in data synthesis.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. led the conceptualization of the Review. J.Z., B.A.M., X.F., T.S., F.W. and Y.Y. wrote the paper. J.Z., B.A.M., W.N., J.K. and Z.H. collected the data. W.N. contributed to Figs. 1, 3 and 5. J.K. and Z.H. contributed to Figs. 4 and 6, respectively.

Corresponding authors

Correspondence to Jinbo Zan, Barbara A. Maher or Xiaomin Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Clifton Buck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Harmonized World Soil Database: https://gaez.fao.org/pages/hwsd

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, J., Maher, B.A., Fang, X. et al. Global dust impacts on biogeochemical cycles and climate. Nat Rev Earth Environ 6, 789–807 (2025). https://doi.org/10.1038/s43017-025-00734-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00734-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing