Abstract
Windblown mineral dust is a nutrient source to the ocean, influencing global ocean productivity, ocean carbon uptake and climate. In this Review, we examine how dust emission fluxes, sources and compositions have changed over the past 7 Myr and consider the implications for ocean productivity. Since the Late Cenozoic, global cooling and orogenic uplift have enhanced dust emissions from major source regions and fluxes to downwind ocean basins, with the associated nutrient supply varying with dust origin. Glacially derived Asian dust contains higher concentrations of ferrous iron (typically exceeding 30% of the total iron) and phosphorus than the aged, highly oxidized mineral dust from North Africa, which has negligible ferrous iron content. Indeed, Asian dust has a notable influence on Pacific Ocean productivity and, potentially, climate. For example, Middle Pleistocene increases in the content of Asian dust Fe2+ (~45%) and P (~55%) coincided with a threefold to fivefold rise in glacial productivity in the South China Sea and a concurrent shift in phytoplankton ecology in the lower-latitude North Pacific. Therefore, decreasing glaciogenic dust–nutrient supply under continued global warming could notably impact ocean productivity, especially in the Pacific Ocean. Future research should focus on constraining the composition and bioavailability of dust-derived nutrients across a wide range of globally important dust sources so that dust composition and related feedbacks can be better parameterized in Earth system models.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Maher, B. A. et al. Global connections between eolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci. Rev. 99, 61–97 (2010).
Kok, J. F. et al. Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ. 4, 71–86 (2023).
Shao, Y. et al. Dust cycle: an emerging core theme in Earth system science. Aeolian Res. 2, 181–204 (2011).
Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).
Mahowald, N. Aerosol Indirect Effect on Biogeochemical Cycles and Climate. Science 334, 794–796 (2011).
Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry and climate. Science 308, 67–71 (2005).
Martínez-Garcia, A. et al. Southern Ocean dust–climate coupling over the past four million years. Nature 476, 312–315 (2011).
Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).
Scanza, R. et al. Modeling dust as component minerals in the community atmosphere model: development of framework and impact on radiative forcing. Atmos. Chem. Phys. 15, 537–561 (2015).
Zan, J. B. et al. Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization. Proc. Natl Acad. Sci. USA 120, e2304773120 (2023).
Schroth, A. W., Crusius, J., Sholkovitz, E. R. & Bostick, B. C. Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci. 2, 337–340 (2009).
Shoenfelt, E. M. et al. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom. Sci. Adv. 3, e1700314 (2017).
Shoenfelt, E. M., Winckler, G., Annett, A. L., Hendry, K. R. & Bostick, B. C. Physical weathering intensity controls bioavailable primary iron (II) silicate content in major global dust sources. Geophys. Res. Lett. 46, 10854–10864 (2019).
Hawkings, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).
Kok, J. et al. Improved representation of the global dust cycle using observational constraints on dust properties and abundance. Atmos. Chem. Phys. 21, 8127–8167 (2021).
Lu, H. et al. Formation and evolution of Gobi Desert in central and eastern Asia. Earth Sci. Rev. 194, 251–263 (2019).
An, Z. S., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since Late Miocene times. Nature 411, 62–66 (2001).
Sun, Y. B. et al. Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth Sci. Rev. 200, 102963 (2020).
Wu, F. et al. Reorganization of Asian climate in relation to Tibetan plateau uplift. Nat. Rev. Earth Environ. 3, 684–700 (2022).
Ding, L. et al. Timing and mechanisms of Tibetan plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).
Xiong, S., Ding, Z., Zhu, Y., Zhou, R. & Lu, H. A 6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess–red clay deposit. Quat. Sci. Rev. 29, 1911–1922 (2010).
Washington, R. et al. Links between topography, wind, deflation, lakes and dust: the case of the Bodele Depression, Chad. Geophys. Res. Lett. 33, L09401 (2006).
Browning, T. J. & Moore, C. M. Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation. Nat. Commun. 14, 5014 (2023).
Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
Huang, J. P. et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 113, D23212 (2008).
Uno, I. et al. Asian dust transported one full circuit around the globe. Nat. Geosci. 2, 557–560 (2009).
Sun, J. M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett. 203, 845–859 (2002).
Mahowald, N. M. et al. Aerosol trace metal leaching and impacts on marine microorganisms. Nat. Commun. 9, 2614 (2018).
Wu, C. et al. Description of dust emission parameterization in CAS-ESM2 and its simulation of global dust cycle and East Asian dust events. J. Adv. Model. Earth Sy. 13, e2020MS002456 (2021).
Molina Catricheo, C. A., Lambert, F., Salomon, J. & Wout, E. Modeling global surface dust deposition using physics-informed neural networks. Commun. Earth Environ. 5, 778 (2024).
Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 106, 20255–20273 (2001).
Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006).
Engelstaedter, S., Tegen, I. & Washington, R. North African dust emissions and transport. Earth Sci. Rev. 79, 73–100 (2006).
Abouchami, W. et al. Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin. Earth Planet. Sci. Lett. 380, 112–123 (2013).
Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).
Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).
Zhang, X., An, Z. & Arimoto, R. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 102, 28041–28047 (1997).
Husar, R. B. et al. Asian dust events of April 1998. J. Geophys. Res. Atmos. 106, 18317–18330 (2001).
Sun, J. M., Zhang, M. Y. & Liu, T. S. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J. Geophys. Res. Atmos. 106, 10325–10333 (2001).
Li, L. et al. Uranium isotope constraints on the pre-deposition time of Asian dust to the North Pacific Ocean: implications for provenance and iron supply. Geophys. Res. Lett. 51, e2023GL107820 (2024).
Jiang, Q. & Yang, X. Sedimentological and geochemical composition of aeolian sediments in the Taklamakan Desert: implications for provenance and sediment supply mechanisms. J. Geophys. Res. Earth Surf. 124, 1217–1237 (2019).
Chen, J. & Li, G. J. Geochemical studies on the source region of Asian dust. Sci. China Earth Sci. 54, 1279–1301 (2011).
Bullard, J., Baddock, M., McTainsh, G. & Leys, J. Sub-basin scale dust source geomorphology detected using MODIS. Geophys. Res. Lett. 35, L1504 (2008).
Bullard, J. E. & McTainsh, G. H. Aeolian-fluvial interactions in dryland environments: examples, concepts and Australia case study. Prog. phys. Geogr. 27, 471–501 (2003).
Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. Atmos. 111, D10202 (2006).
Albani, S. et al. Paleodust variability since the last glacial maximum and implications for iron inputs to the ocean. Geophys. Res. Lett. 43, 3944–3954 (2016).
Lunt, D. J. & Valdes, P. J. Dust deposition and provenance at the Last Glacial Maximum and present day. Geophys. Res. Lett. 29, 2085 (2002).
Bauer, E. & Ganopolski, A. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles. Clim. Past 10, 1333–1348 (2014).
Sudarchikova, N. et al. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica. Clim. Past 11, 765–779 (2015).
Sow, M., Alfaro, S. C., Rajot, J. L. & Marticorena, B. Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 9, 3881–3891 (2009).
Engelstaedter, S. & Washington, R. Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res. Atmos. 112, D03103 (2007).
Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).
Claquin, T., Schulz, M., Balkanski, Y. & Boucher, O. Uncertainties in assessing radiative forcing by mineral dust. Tellus Ser. B Chem. Phys. Meteorol. 50, 491–505 (1998).
Johansen, A. M., Siefert, R. L. & Hoffmann, M. R. Chemical composition of aerosols collected over the tropical North Atlantic ocean. J. Geophys. Res. Atmos. 105, 15277–15312 (2000).
He, X. et al. Global patterns and drivers of soil total phosphorus concentration. Earth Syst. Sci. Data 13, 5831–5846 (2021).
Neuer, S. et al. Dust deposition pulses to the eastern subtropical North Atlantic gyre: does ocean’s biogeochemistry respond? Glob. Biogeochem. Cycles 18, GB4020 (2004).
Houlton, B. Z., Monford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’ s surface environment. Science 62, 58–62 (2018).
Cwiertny, D. M. et al. Characterization and acid-mobilization study of iron-containing mineral dust source materials. J. Geophys. Res. Atmos. 113, D05202A (2008).
Journet, E., Desbouefs, K., Caqineau, S. & Colin, J. L. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35, L07805 (2008).
Shi, Z. et al. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing. Glob. Biogeochem. Cycles 25, GB2010 (2011).
Lu, W. et al. Iron mineralogy and speciation in clay-sized fractions of Chinese desert sediments. J. Geophys. Res. Atmos. 122, 13458–13471 (2017).
Koven, C. D. & Fung, I. Inferring dust composition from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data. J. Geophys. Res. Atmos. 111, D14205 (2006).
Schwertmann, U. & Taylor, R. M. Iron Oxides 2nd edn (Soil Science Society of America, 1987).
Koffman, B. G. et al. Glacial dust surpasses both volcanic ash and desert dust in its iron fertilization potential. Glob. Biogeochem. Cycles 35, e2020GB006821 (2021).
Buck, C. S., Landing, W. M., Resing, J. A. & Lebon, G. T. Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise. Geochem. Geophys. Geosyst. 7, Q04M07 (2006).
Buck, C., Landing, W., Resing, J. & Measures, C. The solubility and deposition of aerosol Fe and other trace elements in the North Atlantic Ocean: observations from the A16N CLIVAR/CO2 repeat hydrography section. Mar. Chem. 120, 57–70 (2010).
Baker, A. R., Li, M. & Chance, R. Trace metal fractional solubility in size-segregated aerosols from the tropical eastern Atlantic Ocean. Glob. Biogeochem. Cycles 34, e2019GB006510 (2020).
Conway, T. M. et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun. 10, 2628 (2019).
Kurisu, M., Adachi, K., Sakata, K. & Takahashi, Y. Stable isotope ratios of combustion iron produced by evaporation in a steel plant. ACS Earth Space Chem. 3, 588–598 (2019).
Fitzsimmons, J. N. & Conway, T. Novel insights into marine iron biogeochemistry from iron isotopes. Annu. Rev. Mar. Sci. 15, 383–406 (2023).
Newman, A. C. D. The Chemical Constitution of Clays 1–128 (Mineralogical Society, 1987).
Jeong, G. Y. Microanalysis and mineralogy of Asian and Saharan dust. J. Anal. Sci. Technol. 15, 10 (2024).
Takahashi, Y., Higashi, M., Furukawa, T. & Mitsunobu, S. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmos. Chem. Phys. 11, 11237–11252 (2011).
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments — a compilation. Earth Sci. Rev. 116, 170–194 (2013).
Kandler, K. et al. Differences and similarities of Central Asian, African, and Arctic dust composition from a single particle perspective. Atmosphere 11, 269 (2020).
Formenti, P. et al. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 11, 8231–8256 (2011).
Jeong, G. Y. & Achterberg, E. P. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys. 14, 12415–12428 (2014).
Cunningham, D., Davies, S. & McLean, D. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: implications for the crustal evolution of the Gobi Altai region. J. Geol. Soc. 166, 321–333 (2009).
Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).
Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
Garzanti, E. et al. Congo River sand and the equatorial quartz factory. Earth Sci. Rev. 197, 102918 (2019).
Bakker, N. L., Drake, N. A. & Bristow, C. S. Evaluating the relative importance of African mineral dust sources using remote sensing. Atmos. Chem. Phys. 19, 10525–10535 (2019).
Liang, W. D. & Hu, X. M. Research progress of sand composition in modern river sediment. Acta Geol. Sin. 97, 2975–2991 (2023).
Bunnell, Z. B. et al. The influence of natural, anthropogenic, and wildfire sources on iron and zinc aerosols delivered to the North Pacific Ocean. Geophys. Res. Lett. 52, e2024GL11387 (2025).
Conway, T. M. & John, S. G. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511, 212–215 (2014).
Eglinton, T. I. et al. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem. Geophys. Geosyst. 3, 1–27 (2002).
van der Does, M., Pourmand, A., Sharifi, A. & Stuut, J. W. North African mineral dust across the tropical Atlantic ocean: insights from dust particle size, radiogenic Sr–Nd–Hf isotopes and rare earth elements (REE). Aeolian Res. 33, 106–116 (2018).
Matzenbacher, B. A., Brummer, G. J. A., Prins, M. A. & Stuut, J. B. W. High-resolution sampling in the eastern tropical North Atlantic reveals episodic Saharan dust deposition: implications for the marine carbon sink. Front. Mar. Sci. 11, 1367786 (2024).
Rea, D. K. & Janecek, T. R. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar. Geol. 49, 149–167 (1982).
Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geological history of wind. Rev. Geophys. 32, 159–195 (1994).
Baker, A. & Jickells, T. Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 33, L17608 (2006).
Hand, J. et al. Estimates of soluble iron from observations and a global mineral aerosol model:biogeochemical implications. J. Geophys. Res. Atmos. 109, D17205 (2004).
Mahowald, N. et al. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014).
Rea, D. K., Snoeckx, H. & Joseph, L. H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13, 215–224 (1998).
Janecek, T. R. Eolian sedimentation in the northwest Pacific Ocean: a preliminary examination of the data from deep sea drilling project sites 576 and 578. Init. Rep. DSDP 86, 589–603 (1985).
Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).
deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).
Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317, 8–19 (2012).
Lang, D. C. et al. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quat. Sci. Rev. 93, 125–141 (2014).
Cerling, T. E. Development of grasslands, savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).
Clemens, S. C., Murray, D. W. & Prell, W. L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943–948 (1996).
Tang, Y. et al. Northward shift of the Northern Hemisphere westerlies in the early to late Miocene and its links to Tibetan uplift. Geophys. Res. Lett. 49, e2022GL099311 (2022).
Hovan, S. A., Rea, D. K., Pisias, N. G. & Shackleton, N. J. A direct link between the China loess and marine δ18O records: aeolian flux to the North Pacific. Nature 340, 296–298 (1989).
Janecek, T. R. & Rea, D. K. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation. GSA Bull. 94, 730–738 (1983).
Lee, A. M. F., Maruyama, A., Lu, S., Yamashita, Y. & Irino, T. Quantification of Asian Dust Source Variabilities in Silt and Clay Fractions since 10 Ma by Parallel Factor (PARAFAC) endmember modeling at IODP site U1425 in the Japan Sea. Lithosphere 2022, 6818103 (2022).
Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).
Sun, D., An, Z., Shaw, J., Bloemendal, J. & Sun, Y. Magnetostratigraphy and palaeoclimatic significance of late tertiary aeolian sequences in the Chinese Loess Plateau. Geophys. J. Int. 134, 207–212 (1998).
Wang, X. et al. Early Pleistocene climate in western arid central Asia inferred from loess–Palaeosol sequences. Sci. Rep. 6, 20560 (2016).
Zan, J. et al. Intensified Northern Hemisphere glaciation facilitates continuous accumulation of late Pliocene loess on the western margin of the Pamir. Geophys. Res. Lett. 49, e2022GL099629.
Qiang, X. et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Ser. Earth Sci. 54, 136–144 (2011).
Ding, Z. L., Derbyshire, E., Yang, S. L., Sun, J. M. & Liu, T. S. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth Planet. Sci. Lett. 237, 45–55 (2005).
Zhang, W., Chen, J., Ji, J. & Li, G. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene. Aeolian Res. 23, 11–20 (2016).
Ding, Z. L. et al. The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet. Sci. Lett. 200, 387–400 (2002).
Fang, X. M. et al. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proc. Natl Acad. Sci. USA 117, 24729–24734 (2020).
Clark, P. U., Shakun, J. D., Rosenthal, Y., Kohler, P. & Bartlein, P. J. Global and regional temperature change over the past 4.5 million years. Science 383, 884–890 (2024).
Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).
LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).
Zan, J. B. et al. Mid-Pleistocene aridity and landscape shifts promoted Palearctic hominin dispersals. Nat. Commun. 15, 10279 (2024).
Jiang, F. et al. Increased dust deposition in the Parece Vela basin since the mid-Pleistocene inferred from radiogenic Sr and Nd isotopes. Glob. Planet. Change 173, 83–95 (2019).
Nakai, S., Halliday, A. N. & Rea, D. K. Provenance of dust in the Pacific Ocean. Earth Planet. Sci. Lett. 119, 143–157 (1993).
Stancin, A. M. et al. Radiogenic isotopic mapping of late Cenozoic eolian and hernipelagic sediment distribution in the east-central Pacific. Earth Planet. Sci. Lett. 248, 840–850 (2006).
Hovan, S. A. Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the eastern equatorial Pacific, Leg 138. Proc. Ocean Drill. Program Sci. Results 138, 615–625 (1995).
Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).
Weber, M. E. et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years. Nat. Commun. 13, 2044 (2022).
Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).
Sugden, D. E., McCulloch, R. D., Bory, A. J. M. & Hein, A. S. Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nat. Geosci. 2, 281–285 (2009).
Maher, B. A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quat. Sci. Rev. 154, 23–84 (2016).
Sun, J. M. et al. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene. Glob. Planet. Chang. 197, 103395 (2021).
Adams, A. M., Prospero, J. M. & Zhang, C. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Clim. 25, 6862–6879 (2012).
Muhs, D. R. The geologic records of dust in the quaternary. Aeolian Res. 9, 3–48 (2013).
van der Does, M. et al. Tropical rains controlling deposition of Saharan dust across the North Atlantic Ocean. Geophys. Res. Lett. 47, e2019GL086867 (2020).
Moulin, C., Lambert, C. E., Dulac, F. & Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 387, 691–694 (1997).
Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc. Natl Acad. Sci. USA 96, 3396–3403 (1999).
Klose, M., Shao, Y., Karremann, M. K. & Fink, A. H. Sahel dust zone and synoptic background. Geophys. Res. Lett. 37, L09802 (2010).
Knippertz, P. & Todd, M. C. The central west Saharan dust hotspot and its relation to African easterly waves and extratropical disturbances. J. Geophys. Res. Atmos. 115, D12117 (2010).
Hsu, S. C. et al. Dust transport from non-East Asian sources to the North Pacific. Geophys. Res. Lett. 39, L12804 (2012).
Liu, Q., Huang, Z., Hu, Z., Dong, Q. & Li, S. Long-range transport and evolution of Saharan dust over East Asia from 2007 to 2020. J. Geophys. Res. Atmos. 127, e2022JD036974 (2022).
Jung, S. J. A., Davies, G. R., Ganssen, G. M. & Kroon, D. Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth Planet. Sci. Lett. 221, 27–37 (2004).
Jeandel, C., Arsouze, T., Lacan, F., Téchiné, P. & Dutay, J. C. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins. Chem. Geol. 239, 156–164 (2007).
Yao, Z. et al. Weakening of the South Asian summer monsoon linked to interhemispheric ice-sheet growth since 12 Ma. Nat. Commun. 14, 829 (2023).
Zhang, Q. et al. East Asian winter monsoon intensification over the Northwest Pacific Ocean driven by late Miocene atmospheric CO2 decline. Sci. Adv. 10, eadm8270 (2024).
Seo, I., Lee, Y. I., Yoo, C. M., Kim, H. J. & Hyeong, K. Sr–Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: implications for the transport mechanism of Asian dust. J. Geophys. Res. Atmos. 119, 11492–11504 (2014).
Seo, I., Lee, Y. I., Kim, W., Yoo, C. M. & Hyeong, K. Movement of the Intertropical Convergence Zone during the mid-Pleistocene transition and the response of atmospheric and surface ocean circulations in the central equatorial pacific. Geochem. Geophys. Geosyst. 16, 3973–3981 (2015).
Kang, J., Zan, J. B., Fang, X. M., Zhnag, W. L. & Azamdzhon, M. Amplified dust cycle in central Asia linked to desert expansion and environmental transformations since 1980. Catena 260, 109421 (2025).
Rashki, A. et al. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer — The July 2016 case. Aeolian Res. 36, 27–44 (2019).
Basile, I. et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 146, 573–589 (1997).
Barkley, A. E. et al. Patagonian dust, Agulhas current, and Antarctic ice-rafted debris contributions to the South Atlantic Ocean over the past 150,000 years. Proc. Natl Acad. Sci. USA 121, e2402120121 (2024).
Aarons, S. M., Aciego, S. M. & Gleason, J. D. Variable Hf–Sr–Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: implications for dust flux to oceans, ice sheets and the terrestrial biosphere. Chem. Geol. 349–350, 18–26 (2013).
Grousset, F. E. & Biscaye, P. E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem. Geol. 222, 149–167 (2005).
Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).
Pourmand, A., Prospero, J. M. & Sharifi, A. Geochemical fingerprinting of trans-Atlantic African dust based on radiogenic Sr–Nd–Hf isotopes and rare earth element anomalies. Geology 42, 675–678 (2014).
Goswami, V., Singh, S. K., Bhushan, R. & Rai, V. K. Temporal variations in 87Sr/86Sr and εNd in sediments of the southeastern Arabian Sea: impact of monsoon and surface water circulation. Geochem. Geophys. Geosyst. 13, Q01001 (2012).
Khim, B. K. et al. Detrital Sr–Nd isotopes, sediment provenances and depositional processes in the Laxmi Basin of the Arabian Sea during the last 800 ka. Geol. Mag. 157, 895–907 (2020).
Kunkelova, T. et al. Dust sources in westernmost Asia have a different geochemical fingerprint to those in the Sahara. Quat. Sci. Rev. 294, 107717 (2022).
Padoan, M., Garzanti, E., Harlavan, Y. & Villa, I. M. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta 75, 3627–3644 (2011).
Suresh, K., Singh, U., Kumar, A., Karri, D. & Ramaswamy, V. Provenance tracing of long-range transported dust over the northeastern Arabian Sea during the southwest monsoon. Atmos. Res. 250, 105377 (2021).
Tindale, N. W. & Pease, P. P. Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt. Deep Sea Res. 46, 1577–1595 (1999).
Bory, A. J. M., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).
Pettke, T., Halliday, A. N., Hall, C. M. & Rea, D. K. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth Planet. Sci. Lett. 178, 397–413 (2000).
Blank, M., Leinen, M. & Prospero, J. M. Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature 314, 84–86 (1985).
Chen, J. et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochim. Cosmochim. Acta 71, 3904–3914 (2007).
Xu, Z. et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment. Geochem. Geophys. Geosyst. 16, 3182–3196 (2015).
Badejo, A. O., Seo, I., Kim, W., Hyeong, K. & Ju, S. J. Effect of eolian Fe-supply change on the phytoplankton productivity and community in central equatorial Pacific Ocean during the Pleistocene: a lipid biomarker approach. Org. Geochem. 112, 170–176 (2017).
Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D. & Mahowald, N. Covariant glacial interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320, 93–96 (2008).
Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).
Lunt, D. J. & Valdes, P. J. Dust transport to dome C, Antarctica, at the last glacial maximum and present day. Geophys. Res. Lett. 28, 295–298 (2001).
Delmonte, B. et al. Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quat. Sci. Rev. 29, 256–264 (2010).
Delmonte, B. et al. Comparing the Epica and Vostok dust records during the last 220, 000 years: stratigraphical correlation and provenance in glacial periods. Earth Sci. Rev. 66, 63–87 (2004).
Gaiero, D. M. Dust provenance in Antarctic ice during glacial periods: from where in southern South America? Geophys. Res. Lett. 34, L17707 (2007).
Kok, J. F. et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 21, 8169–8193 (2021).
Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).
Mills, M. et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).
Dai, M. et al. Upper ocean biogeochemistry of the oligotrophic North Pacific subtropical gyre: from nutrient sources to carbon export. Rev. Geophys. 61, e2022RG000800 (2023).
Ryan-Keogh, T. J., Thomalla, S. J., Chang, N. & Moalusi, T. A new global oceanic multi-model net primary productivity data product. Earth Syst. Sci. Data 15, 4829–4848 (2023).
Meng, X. L. et al. Impact of dust deposition on phytoplankton biomass in the Northwestern Pacific: a long-term study from 1998 to 2020. Sci. Total Environ. 813, 152536 (2022).
Yoon, J. E. et al. Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-a concentrations in the western North Pacific Ocean. Geophys. Res. Lett. 44, 1474–1482 (2017).
Zhai, L. et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago. Geol. Mag. 157, 818–828 (2020).
Zhang, C. et al. Phytoplankton growth response to Asian dust addition in the Northwest Pacific Ocean versus the yellow Sea. Biogeosciences 15, 749–765 (2018).
Tan, S. et al. Satellite-observed transport of dust to the East China Sea and the North Pacific Subtropical Gyre: contribution of dust to the increase in chlorophyll during Spring 2010. Atmosphere 7, 152 (2016).
Chu, Q. et al. Promotion effect of Asian dust on phytoplankton growth and potential dissolved organic phosphorus utilization in the South China Sea. J. Geophys. Res. Biogeosci. 123, 1101–1116 (2018).
Wang, S. H. et al. Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea? Geophys. Res. Lett. 39, L05811 (2012).
Boyd, P. et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–553 (2004).
Tsuda, A. et al. Evidence for the grazing hypothesis: grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic pacific (SEEDS II). J. Oceanogr. 63, 983–994 (2007).
de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightenment. J. Geophys. Res. Oceans 110, C09S16 (2005).
Gu, Z. Y., Ding, Z., Xiong, S. & Liu, T. A seven million geochemical record from Chinese red clay and loess-paleosol sequence: weathering and erosion in northwestern China. Quat. Sci. 19, 357–365 (1999).
Wang, R. et al. Quaternary biogenic opal records in the South China Sea: linkages to East Asian monsoon, global ice volume and orbital forcing. Sci. China Ser. D Earth Sci. 50, 710–724 (2007).
Sigman, D. M., Jaccard, S. L. & Haug, G. H. Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004).
Zhang, Q., Liu, Q., Li, J. & Sun, Y. An integrated study of the eolian dust in pelagic sediments from the North Pacific Ocean based on environmental magnetism, transmission electron microscopy, and diffuse reflectance spectroscopy. J. Geophys. Res. Solid Earth 123, 3358–3376 (2018).
Chen, T., Liu, Q. S., Roberts, A. P., Shi, X. F. & Zhang, Q. A test of the relative importance of iron fertilization from aeolian dust and volcanic ash in the stratified high-nitrate low-chlorophyll subarctic Pacific Ocean. Quat. Sci. Rev. 248, 106577 (2020).
Abell, J. T. & Winckler, G. Long-term variability in Pliocene North Pacific Ocean export production and its implications for ocean circulation in a warmer world. AGU Adv. 4, e2022AV000853 (2023).
Murray, R. W., Leinen, M. & Knowlton, C. W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean. Nat. Geosci. 5, 270–274 (2012).
Winckler, G., Anderson, R. F., Jaccard, S. L. & Marcantonio, F. Ocean dynamics, not dust, have controlled equatorial pacific productivity over the past 500,000 years. Proc. Natl Acad. Sci. USA 113, 6119–6124 (2016).
Loveley, M. R. et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years. Nat. Geosci. 10, 760–764 (2017).
Kumar, N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–680 (1995).
Jaccard, S. L. et al. Two modes of change in southern ocean productivity over the past million years. Science 339, 1419–1423 (2013).
Martínez-Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24, PA1207 (2009).
Weis, J. et al. One-third of Southern Ocean productivity is supported by dust deposition. Nature 629, 603–608 (2024).
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. & Law, C. S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–733 (2000).
Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 424 (2020).
Bishop, J. K. B., Davis, R. E. & Sherman, J. T. Robotic observations on dust storm enhancement of carbon biomass in the North Pacific. Science 298, 817–821 (2002).
Zhang, P. Z., Molnar, P. & Downs, W. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).
Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).
Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).
Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618–632 (2022).
Li, D. F. et al. The competing controls of glaciers, precipitation, and vegetation on high-mountain fluvial sediment yields. Sci. Adv. 10, eads6196 (2024).
Li, L. et al. In-situ silt generation in the Taklimakan Desert evidenced by uranium isotopes. J. Geophys. Res. Atmos. 127, e2022JD036435 (2022).
Wang, S. W., Zan, J. B., Heller, F., Fang, X. M. & Liu, X. M. Dynamic coupling between intensified physical erosion and Asian dust activity under late Cenozoic global cooling. Geophys. Res. Lett. 51, e2024GL110717 (2024).
Lu, H., Wang, X. & Li, L. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geo. Soc. Lond. Spec. Pub. 342, 29–44 (2010).
Wang, N. & Zhang, Y. Y. Long-term variations of global dust emissions and climate control. Environ. Pollut. 340, 122847 (2024).
Mahowald, N. M. & Luo, C. A less dusty future? Geophys. Res. Lett. 30, 1903 (2003).
Evan, A., Flamant, C., Gaetani, M. & Guichard, F. The past, present and future of African dust. Nature 531, 493–495 (2016).
Liu, J. et al. Impact of Arctic amplification on declining spring dust events in East Asia. Clim. Dyn. 54, 1913–1935 (2020).
Zhu, C., Wang, B. & Qian, W. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett. 35, L18702 (2008).
Huang, X., Oberhänsli, H., von Suchodoletz, H. & Sorrel, P. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years. Quat. Sci. Rev. 30, 3661–3674 (2011).
Speer, M. S. Dust storm frequency and impact over Eastern Australia determined by state of Pacific climate system. Weather. Clim. Extrem. 2, 16–21 (2013).
Chadwick, O., Derry, L., Vitousek, P., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).
Porder, S., Vitousek, P. M., Chadwick, O. A., Chamberlain, P. & Hilley, G. E. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).
Swap, R., Garstang, M., Greco, S., Talbot, R. & Kållberg, P. Saharan dust in the Amazon Basin. Tellus B 44, 133–149 (1992).
Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 42, 1984–1991 (2015).
Acknowledgements
The authors thank the Young Scientists Fund (Category A) of the National Natural Science Foundation of China (42525207), the Excellent Research Group for Tibetan Plateau Earth System (42588201) and the National Key Research and Development Program of China (Grant No. 2023YFF0804500) for financial support. The authors also thank Z. Ma and S. Wang from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, for their assistance in data synthesis.
Author information
Authors and Affiliations
Contributions
J.Z. led the conceptualization of the Review. J.Z., B.A.M., X.F., T.S., F.W. and Y.Y. wrote the paper. J.Z., B.A.M., W.N., J.K. and Z.H. collected the data. W.N. contributed to Figs. 1, 3 and 5. J.K. and Z.H. contributed to Figs. 4 and 6, respectively.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Clifton Buck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Harmonized World Soil Database: https://gaez.fao.org/pages/hwsd
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zan, J., Maher, B.A., Fang, X. et al. Global dust impacts on biogeochemical cycles and climate. Nat Rev Earth Environ 6, 789–807 (2025). https://doi.org/10.1038/s43017-025-00734-2
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00734-2


