Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate impacts of the El Niño–Southern Oscillation on Australia

Abstract

El Niño–Southern Oscillation (ENSO) profoundly affects Australian weather, climate, ecosystems and socio-economic sectors. In this Review, we summarize the advances in understanding the ENSO–Australian climate relationship, detailing the complexity beyond the traditional assumptions of El Niño-dry and La Niña-wet patterns, including mechanisms and impacts. The influence of ENSO is most coherent during austral spring, explaining about a quarter of rainfall variability over large parts of eastern Australia. La Niña typically exerts more robust rainfall changes than El Niño, and the Central Pacific El Niño has greater impacts than Eastern Pacific events. These effects are amplified by prolonged ENSO episodes and modulated by land–atmosphere feedback, surrounding sea surface temperatures, local processes and interactions with other climate modes, including multidecadal variability. El Niño-related drying generally worsens when co-occurring with positive Indian Ocean Dipole (IOD) and/or negative Southern Annular Mode (SAM), whereas La Niña rainfall intensifies with negative IOD and/or positive SAM. Although ENSO predictability has improved with advanced understanding of ocean processes and dynamical forecasting, predicting its impacts is challenging because of large internal atmospheric variability. Ongoing changes in ENSO underscore the need for strategic research, continuous in situ monitoring, reduced model biases and deeper understanding of the anthropogenically induced changes in Pacific temperatures to guide adaptation strategies.

Key points

  • El Niño–Southern Oscillation (ENSO) is the foremost climatic phenomenon impacting eastern Australia in terms of intensity and spatial coverage.

  • ENSO impacts large-scale atmospheric circulation to Australia directly via changes in sea level pressure related to the Southern Oscillation and indirectly through changes in Indian Ocean sea surface temperatures and associated wave trains to the Australian extra-tropics.

  • Local processes driven by the surrounding sea surface temperatures and winds crucially alter evaporation, humidity and moisture advection inland, modulating rainfall patterns during ENSO events.

  • The ENSO–Australian rainfall relationship is asymmetric and stronger for La Niña. This relationship varies over multidecadal cycles, peaking during the Interdecadal Pacific Oscillation negative phase.

  • The influence of ENSO on Australian rainfall usually intensifies during multi-year events and is often modulated by other climate variability such as Indian Ocean Dipole, Southern Annular Mode and Madden–Julian Oscillation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Australian climate response to ENSO.
Fig. 2: El Niño teleconnections.
Fig. 3: Australian seasonal precipitation and maximum temperature responses to ENSO diversity.
Fig. 4: Complexity of ENSO-related responses to Australian climate.
Fig. 5: Impacts of ENSO.
Fig. 6: Projected changes in ENSO teleconnections to Australian precipitation and temperature.

Similar content being viewed by others

References

  1. Jevons, W. S. in Waugh’s Australian Almanac for the Year 1859 (ed. Waugh, J. W.) 47–98 (Sydney Gazette, 1859).

  2. Taungurung Clans Country Plan Vol. 27, 34 (Taungurung Clans Aboriginal Corporation, 2016).

  3. Todd, C. Droughts in Australia. Their causes, duration, and effect. The South Australian Advertiser 5–6 (29 December 1888).

  4. Walker, G. T. Correlation in seasonal variations of weather—a further study of world weather. Mem. Indian. Meteorol. Dep. 24, 275–332 (1924).

    Google Scholar 

  5. Troup, A. J. The ‘Southern Oscillation’. Q. J. R. Meteorol. Soc. 91, 490–506 (1965).

    Article  Google Scholar 

  6. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather. Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  7. Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather. Rev. 110, 354–384 (1982).

    Article  Google Scholar 

  8. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather. Rev. 115, 1606–1626 (1987).

    Article  Google Scholar 

  9. Mcphaden, M. J., Busalacchi, A. J. & Anderson, D. L. T. A Toga retrospective. Oceanography 23, 86–103 (2010).

    Article  Google Scholar 

  10. Gill, A. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Google Scholar 

  11. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  12. Wyrtki, K. Water displacements in the Pacific and the genesis of El Nino cycles. J. Geophys. Res. Ocean. 90, 7129–7132 (1985).

    Article  Google Scholar 

  13. Cane, M. A. & Zebiak, S. E. A theory for El Niño and the Southern Oscillation. Science 228, 1085–1087 (1985).

    Article  Google Scholar 

  14. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  15. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article  Google Scholar 

  16. Vialard, J. et al. The El Niño Southern Oscillation (ENSO) recharge oscillator conceptual model: achievements and future prospects. Rev. Geophys. 63, e2024RG000843 (2025).

    Article  Google Scholar 

  17. McBride, J. L. & Nicholls, N. Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Weather. Rev. 111, 1998–2004 (1983).

    Article  Google Scholar 

  18. Hammer, G. L. et al. Advances in application of climate prediction in agriculture. Agric. Syst. 70, 515–553 (2001).

    Article  Google Scholar 

  19. Wang, G. & Hendon, H. H. Sensitivity of Australian rainfall to inter–El Niño variations. J. Clim. 20, 4211–4226 (2007).

    Article  Google Scholar 

  20. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Env. 2, 628–644 (2021).

    Article  Google Scholar 

  21. Karoly, D. J. Southern hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).

    Article  Google Scholar 

  22. Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).

    Article  Google Scholar 

  23. Nicholls, N. Sea surface temperatures and Australian winter rainfall. J. Clim. 2, 965–973 (1989).

    Article  Google Scholar 

  24. Rakich, C. S., Holbrook, N. J. & Timbal, B. A pressure gradient metric capturing planetary-scale influences on eastern Australian rainfall. Geophys. Res. Lett. 35, L08713 (2008).

    Article  Google Scholar 

  25. Holgate, C., Evans, J. P., Taschetto, A. S., Sen Gupta, A. & Santoso, A. The impact of interacting climate modes on East Australian precipitation moisture sources. J. Clim. 35, 3147–3159 (2022).

    Article  Google Scholar 

  26. van Rensch, P., Gallant, A. J. E., Cai, W. & Nicholls, N. Evidence of local sea surface temperatures overriding the southeast Australian rainfall response to the 1997–1998 El Niño. Geophys. Res. Lett. 42, 9449–9456 (2015).

    Article  Google Scholar 

  27. Evans, J. P. & Boyer-Souchet, I. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett. 39, L10803–L11080 (2012).

    Article  Google Scholar 

  28. Ummenhofer, C. C. et al. How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event? Geophys. Res. Lett. 42, 9942–9951 (2015).

    Article  Google Scholar 

  29. Sardeshmukh, P. D. & Hoskins, B. J. Vorticity balances in the tropics during the 1982–83 El Niño–Southern Oscillation event. Q. J. R. Meteorol. Soc. 111, 261–278 (1985).

    Google Scholar 

  30. Mo, K. C. & Ghil, M. Statistics and dynamics of persistent anomalies. J. Atmos. Sci. 44, 877–902 (1987).

    Article  Google Scholar 

  31. Ambrizzi, T., Hoskins, B. J. & Hsu, H.-H. Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci. 52, 3661–3672 (1995).

    Article  Google Scholar 

  32. Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather. Rev. 137, 3233–3253 (2009).

    Article  Google Scholar 

  33. Saji, N., Goswami, B., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article  Google Scholar 

  34. McIntosh, P. C. & Hendon, H. H. Understanding Rossby wave trains forced by the Indian Ocean Dipole. Clim. Dyn. 50, 2783–2798 (2018).

    Article  Google Scholar 

  35. Seager, R., Harnik, N., Kushnir, Y., Robinson, W. & Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 16, 2960–2978 (2003).

    Article  Google Scholar 

  36. Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).

    Article  Google Scholar 

  37. L’Heureux, M. L. & Thompson, D. Observed relationships between the El Nino–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).

    Article  Google Scholar 

  38. Lim, E.-P., Hendon, H. H. & Rashid, H. Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).

    Article  Google Scholar 

  39. Hendon, H. H., Thompson, D. W. J. & Wheeler, M. C. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Clim. 20, 2452–2467 (2007).

    Article  Google Scholar 

  40. Brown, J. R. et al. South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Env. 1, 530–543 (2020).

    Article  Google Scholar 

  41. Cai, W., van Rensch, P., Cowan, T. & Sullivan, A. Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Clim. 23, 4944–4955 (2010).

    Article  Google Scholar 

  42. Hendon, H. H. Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J. Clim. 16, 1775–1790 (2003).

    Article  Google Scholar 

  43. Hendon, H. H., Lim, E.-P. & Liu, G. The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J. Clim. 25, 1278–1290 (2012).

    Article  Google Scholar 

  44. Klein, S. A., Soden, B. J. & Lau, N.-C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Clim. 12, 917–932 (1999).

    Article  Google Scholar 

  45. Tokinaga, H. & Tanimoto, Y. Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteorol. Soc. Japan. Ser. II 82, 1007–1018 (2004).

    Article  Google Scholar 

  46. Taschetto, A. S., Sen Gupta, A., Hendon, H. H., Ummenhofer, C. C. & England, M. H. The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J. Clim. 24, 3734–3747 (2011).

    Article  Google Scholar 

  47. Cai, W. & van Rensch, P. Austral summer teleconnections of Indo-Pacific variability: their nonlinearity and impacts on Australian climate. J. Clim. 26, 2796–2810 (2013).

    Article  Google Scholar 

  48. Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Clim. 25, 6318–6329 (2012).

    Article  Google Scholar 

  49. Pook, M. J., McIntosh, P. C. & Meyers, G. A. The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteorol. Climatol. 45, 1156–1170 (2006).

    Article  Google Scholar 

  50. Gillett, Z. E., Taschetto, A. S., Holgate, C. M. & Santoso, A. Linking ENSO to synoptic weather systems in eastern Australia. Geophys. Res. Lett. 50, e2023GL104814 (2023).

    Article  Google Scholar 

  51. Fogt, R.L., Bromwich, D.H. & Hines, K.M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).

    Article  Google Scholar 

  52. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Article  Google Scholar 

  53. Hoerling, M. P., Kumar, A. & Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 10, 1769–1786 (1997).

    Article  Google Scholar 

  54. Frauen, C., Dommenget, D., Tyrrell, N. & Rezny, M. Analysis of the non-linearity of El Niño Southern Oscillation teleconnections. J. Clim. 27, 6225–6244 (2014).

    Article  Google Scholar 

  55. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 112, C11007 (2007).

    Article  Google Scholar 

  56. Taschetto, A. S. & England, M. H. El Niño Modoki impacts on Australian rainfall. J. Clim. 22, 3167–3174 (2009).

    Article  Google Scholar 

  57. Jones, D. A. & Trewin, B. C. On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int. J. Climatol. 20, 697–719 (2000).

    Article  Google Scholar 

  58. Budin, G. R. Interannual variability of Australian snowfall. Aust. Meteorol. Mag. 33, 145–159 (1985).

    Google Scholar 

  59. Pepler, A. S., Trewin, B. & Ganter, C. The influences of climate drivers on the Australian snow season. Aust. Meteor. Ocean. J. 65, 195–205 (2015).

    Article  Google Scholar 

  60. Crimp, S. et al. Synoptic to large-scale drivers of minimum temperature variability in Australia—long-term changes. Int. J. Climatol. 38, e237–e254 (2018).

    Article  Google Scholar 

  61. Stone, R., Hammer, G. & Nicholls, N. Frost in northeast Australia: trends and influences of phases of the Southern Oscillation. J. Clim. 9, 1896–1909 (1996).

    Article  Google Scholar 

  62. Gillett, Z. E., Hendon, H. H., Arblaster, J. M. & Lin, H. Sensitivity of the southern hemisphere wintertime teleconnection to the location of ENSO heating. J. Clim. 36, 2497–2514 (2023).

    Article  Google Scholar 

  63. Chung, C. T. Y. & Power, S. B. The non-linear impact of El Nino, La Nina and the Southern Oscillation on seasonal and regional Australian precipitation. JSHESS 67, 25–45 (2017).

    Google Scholar 

  64. McGregor, S., Gallant, A. & van Rensch, P. Quantifying ENSOs impact on Australia’s regional monthly rainfall risk. Geophys. Res. Lett. 51, e2023GL106298 (2024).

    Article  Google Scholar 

  65. King, A. D., Alexander, L. V. & Donat, M. G. Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett. 40, 2271–2277 (2013).

    Article  Google Scholar 

  66. Lieber, R., Brown, J., King, A. & Freund, M. Historical and future asymmetry of ENSO teleconnections with extremes. J. Clim. 37, 5909–5924 (2024).

    Article  Google Scholar 

  67. He, J., Li, S., Wang, B., Zhang, L. & Duan, K. Quantifying the impacts of ENSO on Australian summer rainfall extremes during 1960–2020. J. Hydrol. 654, 132834 (2025).

    Article  Google Scholar 

  68. Power, S., Haylock, M., Colman, R. & Wang, X. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 19, 4755–4771 (2006).

    Article  Google Scholar 

  69. Arblaster, J. M. & Alexander, L. V. The impact of the El Niño–Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett. 39, L20702 (2012).

    Article  Google Scholar 

  70. Perkins, S. E., Argüeso, D. & White, C. J. Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophys. Res. Atmos. 120, 8144–8164 (2015).

    Article  Google Scholar 

  71. Loughran, T. F., Perkins-Kirkpatrick, S. E. & Alexander, L. V. Understanding the spatio-temporal influence of climate variability on Australian heatwaves. Int. J. Climatol. 37, 3963–3975 (2017).

    Article  Google Scholar 

  72. Reddy, P. J., Perkins-Kirkpatrick, S. E., Ridder, N. N. & Sharples, J. J. Combined role of ENSO and IOD on compound drought and heatwaves in Australia using two CMIP6 large ensembles. Weather. Clim. Extremes 37, 100469 (2022).

    Article  Google Scholar 

  73. Parker, T. J., Berry, G. J., Reeder, M. J. & Nicholls, N. Modes of climate variability and heat waves in Victoria, southeastern Australia. Geophys. Res. Lett. 41, 6926–6934 (2014).

    Article  Google Scholar 

  74. Boschat, G. et al. Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Clim. Dyn. 44, 1823–1840 (2015).

    Article  Google Scholar 

  75. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Article  Google Scholar 

  76. Taschetto, A. S., Ummenhofer, C. C., Sen Gupta, A. & England, M. H. Effect of anomalous warming in the central Pacific on the Australian monsoon. Geophys. Res. Lett. 36, L12704 (2009).

    Article  Google Scholar 

  77. Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 65–86 (American Geophysical Union, 2020).

  78. Chung, C. et al. Evaluation of seasonal teleconnections to remote drivers of Australian rainfall in CMIP5 and CMIP6 models. JSHESS 73, 219–261 (2023).

    Article  Google Scholar 

  79. Kug, J.-S. & Ham, Y.-G. Are there two types of La Nina? Geophys. Res. Lett. 38, L16704 (2011).

    Article  Google Scholar 

  80. Freund, M. B., Marshall, A. G., Wheeler, M. C. & Brown, J. N. Central Pacific El Niño as a precursor to summer drought-breaking rainfall over southeastern Australia. Geophys. Res. Lett. 48, e2020GL091131 (2021).

    Article  Google Scholar 

  81. Ma, Y., Sun, J., Dong, T., Yu, W. & Dong, W. More profound impact of CP ENSO on Australian spring rainfall in recent decades. Clim. Dyn. 60, 3065–3079 (2023).

    Article  Google Scholar 

  82. Loughran, T. F., Perkins-Kirkpatrick, S. E., Alexander, L. V. & Pitman, A. J. No significant difference between Australian heat wave impacts of Modoki and eastern Pacific El Niño. Geophys. Res. Lett. 44, 5150–5157 (2017).

    Article  Google Scholar 

  83. Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Article  Google Scholar 

  84. Lim, E.-P., Hendon, H. H., Zhao, M. & Yin, Y. Inter-decadal variations in the linkages between ENSO, the IOD and south-eastern Australian springtime rainfall in the past 30 years. Clim. Dyn. 49, 97–112 (2017).

    Article  Google Scholar 

  85. Sharmila, S. & Hendon, H. H. Mechanisms of multiyear variations of Northern Australia wet-season rainfall. Sci. Rep. 10, 5086 (2020).

    Article  Google Scholar 

  86. Heidemann, H. et al. The influence of interannual and decadal Indo-Pacific sea surface temperature variability on Australian monsoon rainfall. J. Clim. 35, 425–444 (2022).

    Article  Google Scholar 

  87. Folland, C. K. Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett. 29, 1643 (2002).

    Article  Google Scholar 

  88. Mcgregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 4, 888–892 (2014).

    Article  Google Scholar 

  89. Trascasa-Castro, P., Maycock, A. C., Ruprich-Robert, Y., Turco, M. & Staten, P. W. Atlantic multidecadal variability modulates the climate impacts of El Niño–Southern Oscillation in Australia. Environ. Res. Lett. 18, 084029 (2023).

    Article  Google Scholar 

  90. Wreford, D., McGregor, S. & Naha, R. Modulation in teleconnections of the El Nino Southern Oscillation by Atlantic multidecadal sea surface temperature variability. Geophys. Res. Lett. 51, e2023GL107404 (2024).

    Article  Google Scholar 

  91. Liu, G., Li, J. & Ying, T. Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia. Atmos. Chem. Phys. 23, 9217–9228 (2023).

    Article  Google Scholar 

  92. Allan, R. J. & D’Arrigo, R. D. ‘Persistent’ ENSO sequences: how unusual was the 1990–1995 El Niño? Holocene 9, 101–118 (1999).

    Article  Google Scholar 

  93. Black, A. et al. Australian northwest cloudbands and their relationship to atmospheric rivers and precipitation. Mon. Weather. Rev. 149, 1125–1139 (2021).

    Article  Google Scholar 

  94. Allan, R. et al. The context of the 2018–20 “Protracted” El Niño Episode: Australian drought and terrestrial, marine, and ecophysiological impacts. Weather Climate Soc. 15, 727–746 (2023).

    Article  Google Scholar 

  95. Okumura, Y. M. & Deser, C. Asymmetry in the duration of El Niño and La Niña. J. Clim. 23, 5826–5843 (2010).

    Article  Google Scholar 

  96. Dommenget, D., Bayr, T. & Frauen, C. Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim. Dyn. 40, 2825–2847 (2013).

    Article  Google Scholar 

  97. Huang, A. T., Gillett, Z. E. & Taschetto, A. S. Australian rainfall increases during multi-year La Niña. Geophys. Res. Lett. 51, e2023GL106939 (2024).

    Article  Google Scholar 

  98. Lu, Z. et al. Increased frequency of multi-year El Niño–Southern Oscillation events across the Holocene. Nat. Geosci. 18, 337–343 (2025).

    Article  Google Scholar 

  99. Allan, R. J., Gergis, J. & D’Arrigo, R. D. Placing the AD 2014–2016 ‘protracted’ El Niño episode into a long-term context. Holocene 30, 90–105 (2020).

    Article  Google Scholar 

  100. Reid, K. J. et al. A multiscale evaluation of the wet 2022 in eastern Australia. J. Clim. 38, 909–929 (2025).

    Article  Google Scholar 

  101. Extreme Rainfall and Flooding in South-Eastern Queensland and Eastern New South Wales (Bureau of Meteorology, 2022); http://www.bom.gov.au/climate/current/statements/scs76.pdf.

  102. Liguori, G., McGregor, S., Singh, M., Arblaster, J. & Di Lorenzo, E. Revisiting ENSO and IOD contributions to Australian precipitation. Geophys. Res. Lett. 49, e2021GL094295 (2022).

    Article  Google Scholar 

  103. Ummenhofer, C. C. et al. Indian and Pacific Ocean influences on Southeast Australian drought and soil moisture. J. Clim. 24, 1313–1336 (2011).

    Article  Google Scholar 

  104. Pepler, A., Timbal, B., Rakich, C. & Coutts-Smith, A. Indian Ocean dipole overrides ENSO’s influence on cool season rainfall across the eastern seaboard of Australia. J. Clim. 27, 3816–3826 (2014).

    Article  Google Scholar 

  105. White, C. J., Hudson, D. & Alves, O. ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Clim. Dyn. 43, 1791–1810 (2014).

    Article  Google Scholar 

  106. Wilson, A. B., Bromwich, D. H. & Hines, K. M. Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Clim. 29, 2291–2309 (2016).

    Article  Google Scholar 

  107. Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the southern hemisphere. WIREs Clim. Chang. 11, e652 (2020).

    Article  Google Scholar 

  108. Meneghini, B., Simmonds, I. & Smith, I. N. Association between Australian rainfall and the Southern Annular Mode. Int. J. Climatol. 27, 109–121 (2007).

    Article  Google Scholar 

  109. Hendon, H. H., Lim, E.-P., Arblaster, J. M. & Anderson, D. L. T. Causes and predictability of the record wet east Australian spring 2010. Clim. Dyn. 42, 1155–1174 (2014).

    Article  Google Scholar 

  110. Lim, E.-P. & Hendon, H. H. Understanding and predicting the strong Southern Annular Mode and its impact on the record wet east Australian spring 2010. Clim. Dyn. 44, 2807–2824 (2015).

    Article  Google Scholar 

  111. Ghelani, R. P. S., Oliver, E. C. J., Holbrook, N. J., Wheeler, M. C. & Klotzbach, P. J. Joint modulation of intraseasonal rainfall in tropical Australia by the Madden–Julian Oscillation and El Niño–Southern Oscillation. Geophys. Res. Lett. 44, 10,754–10,761 (2017).

    Article  Google Scholar 

  112. Cowan, T., Wheeler, M. C. & Marshall, A. G. The combined influence of the Madden–Julian Oscillation and El Niño–Southern Oscillation on Australian rainfall. J. Clim. 36, 313–334 (2023).

    Article  Google Scholar 

  113. Dao, T. L., Vincent, C. L. & Lane, T. P. Multiscale influences on rainfall in northeast Australia. J. Clim. 36, 5989–6006 (2023).

    Article  Google Scholar 

  114. Marshall, A. G., Wheeler, M. C. & Cowan, T. Madden–Julian Oscillation impacts on Australian temperatures and extremes. J. Clim. 36, 335–357 (2023).

    Article  Google Scholar 

  115. Nicholls, N. A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Weather. Rev. 107, 1221–1224 (1979).

    Article  Google Scholar 

  116. Dowdy, A. J. Long-term changes in Australian tropical cyclone numbers. Atmos. Sci. Lett. 15, 292–298 (2014).

    Article  Google Scholar 

  117. Chand, S. S. et al. Review of tropical cyclones in the Australian region: climatology, variability, predictability, and trends. WIREs Clim. Chang. 10, e602 (2019).

    Article  Google Scholar 

  118. Callaghan, J. & Power, S. B. Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim. Dyn. 37, 647–662 (2011).

    Article  Google Scholar 

  119. Chand, S. S., McBride, J. L., Tory, K. J., Wheeler, M. C. & Walsh, K. J. E. Impact of different ENSO regimes on southwest Pacific tropical cyclones. J. Clim. 26, 600–608 (2013).

    Article  Google Scholar 

  120. Ramsay, H. A., Richman, M. B. & Leslie, L. M. Seasonal tropical cyclone predictions using optimized combinations of ENSO regions: application to the Coral Sea Basin. J. Clim. 27, 8527–8542 (2014).

    Article  Google Scholar 

  121. Greenslade, J. & Gregory, P. Towards an Improved Bureau Seasonal Cyclone Outlook Bureau Research Report No. 076 (Bureau of Meteorology, 2023).

  122. Pepler, A., Dowdy, A. & Hope, P. A global climatology of surface anticyclones, their variability, associated drivers and long-term trends. Clim. Dyn. 52, 5397–5412 (2019).

    Article  Google Scholar 

  123. Pepler, A. S. et al. Impact of identification method on the inferred characteristics and variability of Australian east coast lows. Mon. Weather. Rev. 143, 864–877 (2015).

    Article  Google Scholar 

  124. Rudeva, I. & Simmonds, I. Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Clim. 28, 3311–3330 (2015).

    Article  Google Scholar 

  125. Callaghan, J. & Power, S. B. Major coastal flooding in southeastern Australia, associated deaths and weather systems. Aust. Meteor. Ocean. J. 64, 183–213 (2014).

    Article  Google Scholar 

  126. Power, S. B. & Callaghan, J. Variability in severe coastal flooding, associated storms, and death tolls in southeastern Australia since the mid-nineteenth century. J. Appl. Meteorol. Climatol. 55, 1139–1149 (2016).

    Article  Google Scholar 

  127. Allen, J. T., Karoly, D. J. & Walsh, K. J. Future Australian severe thunderstorm environments. Part I: a novel evaluation and climatology of convective parameters from two climate models for the late twentieth century. J. Clim. 27, 3827–3847 (2014).

    Article  Google Scholar 

  128. Dowdy, A. J. Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn. 54, 3041–3052 (2020).

    Article  Google Scholar 

  129. Azorin-Molina, C. et al. A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941–2016. J. Clim. 34, 3103–3127 (2021).

    Article  Google Scholar 

  130. Tut, Q. F., Raupach, T. H. & Taschetto, A. S. Links between hail hazard and climate modes of variability across Australia. Q. J. R. Meteorol. Soc. 151, e4985 (2025).

    Article  Google Scholar 

  131. Hauser, S. et al. A weather system perspective on winter–spring rainfall variability in southeastern Australia during El Niño. Q. J. R. Meteorol. Soc. 146, 2614–2633 (2020).

    Article  Google Scholar 

  132. Pepler, A., Coutts-Smith, A. & Timbal, B. The role of east coast lows on rainfall patterns and inter-annual variability across the East Coast of Australia. Int. J. Climatol. 34, 1011–1021 (2014).

    Article  Google Scholar 

  133. Holgate, C. M. et al. Physical mechanisms of meteorological drought development, intensification and termination: an Australian review. Commun. Earth Env. 6, 220 (2025).

    Article  Google Scholar 

  134. Tozer, C. R. et al. Impacts of ENSO on Australian rainfall: what not to expect. JSHESS 73, 77–81 (2023).

    Article  Google Scholar 

  135. Parker, T., Gallant, A., Hobbins, M. & Hoffmann, D. Flash drought in Australia and its relationship to evaporative demand. Environ. Res. Lett. 16, 064033 (2021).

    Article  Google Scholar 

  136. Gibson, A. J., Verdon-Kidd, D. C. & Hancock, G. R. Characterising the seasonal nature of meteorological drought onset and termination across Australia. JSHESS 72, 38–51 (2022).

    Article  Google Scholar 

  137. Verdon-Kidd, D. C. & Kiem, A. S. Quantifying drought risk in a nonstationary climate. J. Hydrometeorol. 11, 1019–1031 (2010).

    Article  Google Scholar 

  138. Parker, T. & Gallant, A. J. E. The role of heavy rainfall in drought in Australia. Weather. Clim. Extremes 38, 100528 (2022).

    Article  Google Scholar 

  139. Verdon, D. C., Wyatt, A. M., Kiem, A. S. & Franks, S. W. Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour. Res. 40, W10201 (2004).

    Article  Google Scholar 

  140. Pook, M. J., Risbey, J. S., Ummenhofer, C. C., Briggs, P. R. & Cohen, T. J. A synoptic climatology of heavy rain events in the Lake Eyre and Lake Frome catchments. Front. Environ. Sci. 2, 54 (2014).

    Article  Google Scholar 

  141. Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 36, L04706 (2009).

    Article  Google Scholar 

  142. King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Chang. 10, 177–179 (2020).

    Article  Google Scholar 

  143. Holgate, C. M., Evans, J. P., van Dijk, A. I. J. M., Pitman, A. J. & Virgilio, G. D. Australian precipitation recycling and evaporative source regions. J. Clim. 33, 8721–8735 (2020).

    Article  Google Scholar 

  144. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Env. 2, 1–17 (2021).

    Article  Google Scholar 

  145. Verdon, D. C., Kiem, A. S. & Franks, S. W. Multi-decadal variability of forest fire risk—eastern Australia. Int. J. Wildland Fire 13, 165–171 (2004).

    Article  Google Scholar 

  146. Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).

    Article  Google Scholar 

  147. Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS One 14, e0222328 (2019).

    Article  Google Scholar 

  148. Squire, D. et al. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. NPJ Clim. Atmos. Sci. 4, 1–12 (2021).

    Article  Google Scholar 

  149. Mariani, M., Fletcher, M.-S., Holz, A. & Nyman, P. ENSO controls interannual fire activity in southeast Australia. Geophys. Res. Lett. 43, 10,891–10,900 (2016).

    Article  Google Scholar 

  150. Richardson, D. et al. Global increase in wildfire potential from compound fire weather and drought. NPJ Clim. Atmos. Sci. 5, 23 (2022).

    Article  Google Scholar 

  151. Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Chang. 7, 906–911 (2017).

    Article  Google Scholar 

  152. Greenville, A. C., Dickman, C. R., Wardle, G. M. & Letnic, M. The fire history of an arid grassland: the influence of antecedent rainfall and ENSO. Int. J. Wildland Fire 18, 631–639 (2009).

    Article  Google Scholar 

  153. Biswas, S., Chand, S. S., Dowdy, A. J. & Sharma, K. Australian fire weather variability using calibrated long-term reanalysis data. Discov. Env. 3, 31 (2025).

    Article  Google Scholar 

  154. Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).

    Article  Google Scholar 

  155. Wang, G. & Cai, W. Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geosci. Lett. 7, 19 (2020).

    Article  Google Scholar 

  156. Richardson, D. et al. Increasing fire weather season overlap between North America and Australia challenges firefighting cooperation. Earth’s Future 13, e2024EF005030 (2025).

    Article  Google Scholar 

  157. Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, L19710 (2009).

    Article  Google Scholar 

  158. Devanand, A. et al. Australia’s Tinderbox Drought: an extreme natural event likely worsened by human-caused climate change. Sci. Adv. 10, eadj3460 (2024).

    Article  Google Scholar 

  159. Holbrook, N. J. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 409–428 (American Geophysical Union, 2020).

  160. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

    Article  Google Scholar 

  161. Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).

    Article  Google Scholar 

  162. Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).

    Article  Google Scholar 

  163. Feng, M., McPhaden, M. J., Xie, S.-P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1277 (2013).

    Article  Google Scholar 

  164. Gregory, C. H. et al. Global marine heatwaves under different flavors of ENSO. Geophys. Res. Lett. 51, e2024GL110399 (2024).

    Article  Google Scholar 

  165. Pearce, A. F. & Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).

    Article  Google Scholar 

  166. Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78–82 (2013).

    Article  Google Scholar 

  167. Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).

    Article  Google Scholar 

  168. Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article  Google Scholar 

  169. Li, Z., Zhang, X. & Holbrook, N. J. Insights into contrasting ENSO influence on SST variations off Australia’s southeast and west coasts. NPJ Clim. Atmos. Sci. 8, 229 (2025).

    Article  Google Scholar 

  170. Oliver, E. C. J. & Holbrook, N. J. Variability and long-term trends in the shelf circulation off eastern Tasmania. J. Geophys. Res. Ocean. 123, 7366–7381 (2018).

    Article  Google Scholar 

  171. Cetina-Heredia, P., Roughan, M., van Sebille, E. & Coleman, M. A. Long-term trends in the East Australian Current separation latitude and eddy driven transport. J. Geophys. Res. Ocean. 119, 4351–4366 (2014).

    Article  Google Scholar 

  172. Gregory, C. H., Holbrook, N. J., Marshall, A. G. & Spillman, C. M. Atmospheric drivers of Tasman Sea marine heatwaves. J. Clim. 36, 5197–5214 (2023).

    Article  Google Scholar 

  173. Lough, J. M. Climate variation and El Niño–Southern Oscillation events on the Great Barrier Reef: 1958 to 1987. Coral Reefs 13, 181–185 (1994).

    Article  Google Scholar 

  174. Lough, J. M. 1997–98: unprecedented thermal stress to coral reefs? Geophys. Res. Lett. 27, 3901–3904 (2000).

    Article  Google Scholar 

  175. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  Google Scholar 

  176. Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).

    Article  Google Scholar 

  177. Wijffels, S. & Meyers, G. An intersection of oceanic waveguides: variability in the Indonesian throughflow region. J. Phys. Oceanogr. 34, 1232–1253 (2004).

    Article  Google Scholar 

  178. Holmes, R. M., Smith, G. A. & Spillman, C. M. Seasonal sea level forecasts for the Australian coast. JSHESS 75, ES24047 (2025).

    Article  Google Scholar 

  179. Zhang, X. & Church, J. A. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 39, L21701 (2012).

    Article  Google Scholar 

  180. White, N. J. et al. Australian sea levels—trends, regional variability and influencing factors. Earth-Sci. Rev. 136, 155–174 (2014).

    Article  Google Scholar 

  181. Abhik, S. et al. Influence of the 2015–2016 El Niño on the record-breaking mangrove dieback along northern Australia coast. Sci. Rep. 11, 20411 (2021).

    Article  Google Scholar 

  182. Sprintall, J., Cravatte, S., Dewitte, B., Du, Y. & Sen Gupta, A. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 337–359 (American Geophysical Union, 2020).

  183. Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article  Google Scholar 

  184. Stone, R. C., Hammer, G. L. & Marcussen, T. Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384, 252–255 (1996).

    Article  Google Scholar 

  185. Zheng, B., Chapman, S. C., Christopher, J. T., Frederiks, T. M. & Chenu, K. Frost trends and their estimated impact on yield in the Australian wheatbelt. J. Exp. Bot. 66, 3611–3623 (2015).

    Article  Google Scholar 

  186. Welsh, J. M., Taschetto, A. S. & Quinn, J. P. Climate and agricultural risk: assessing the impacts of major climate drivers on Australian cotton production. Eur. J. Agron. 140, 126604 (2022).

    Article  Google Scholar 

  187. Yuan, C. & Yamagata, T. Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Sci. Rep. 5, 17252 (2015).

    Article  Google Scholar 

  188. Feng, P. et al. Increasing dominance of Indian Ocean variability impacts Australian wheat yields. Nat. Food 3, 862–870 (2022).

    Article  Google Scholar 

  189. Tong, S. et al. Climate variability, social and environmental factors, and Ross River virus transmission: research development and future research needs. Environ. Health Perspect. 116, 1591–1597 (2008).

    Article  Google Scholar 

  190. Nicholls, N. A method for predicting murray valley encephalitis in southeast Australia using the Southern Oscillation. Aust. J. Exp. Biol. Med. Sci. 64, 587–594 (1986).

    Article  Google Scholar 

  191. Braddick, M. et al. An integrated public health response to an outbreak of Murray Valley encephalitis virus infection during the 2022–2023 mosquito season in Victoria. Front. Public. Health 11, 1256149 (2023).

    Article  Google Scholar 

  192. McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim. Past. 9, 2269–2284 (2013).

    Article  Google Scholar 

  193. Ashcroft, L., Gergis, J. & Karoly, D. J. Long-term stationarity of El Niño–Southern Oscillation teleconnections in southeastern Australia. Clim. Dyn. 46, 2991–3006 (2016).

    Article  Google Scholar 

  194. Freund, M. B. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).

    Article  Google Scholar 

  195. Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Env. 4, 407–418 (2023).

    Article  Google Scholar 

  196. Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).

    Article  Google Scholar 

  197. Power, S. B., Delage, F. P. D., Chung, C. T. Y., Ye, H. & Murphy, B. F. Humans have already increased the risk of major disruptions to Pacific rainfall. Nat. Commun. 8, 14368 (2017).

    Article  Google Scholar 

  198. Lieber, R. et al. ENSO teleconnections more uncertain in regions of lower socioeconomic development. Geophys. Res. Lett. 49, e2022GL100553 (2022).

    Article  Google Scholar 

  199. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article  Google Scholar 

  200. Power, S. et al. Decadal climate variability in the tropical Pacific: characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021).

    Article  Google Scholar 

  201. Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Env. 4, 754–769 (2023).

    Article  Google Scholar 

  202. Geng, T. et al. Increased occurrences of consecutive La Niña events under global warming. Nature 619, 774–781 (2023).

    Article  Google Scholar 

  203. Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541 (2013).

    Article  Google Scholar 

  204. Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    Article  Google Scholar 

  205. Power, S. B. & Delage, F. P. D. El Niño–Southern oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J. Clim. 31, 6189–6207 (2018).

    Article  Google Scholar 

  206. McGregor, S., Cassou, C., Kosaka, Y. & Phillips, A. S. Projected ENSO teleconnection changes in CMIP6. Geophys. Res. Lett. 49, e2021GL097511 (2022).

    Article  Google Scholar 

  207. Perry, S. J., McGregor, S., Sen Gupta, A., England, M. H. & Maher, N. Projected late 21st century changes to the regional impacts of the El Niño–Southern Oscillation. Clim. Dyn. 54, 395–412 (2020).

    Article  Google Scholar 

  208. Delage, F. P. D. & Power, S. B. The impact of global warming and the El Niño–Southern Oscillation on seasonal precipitation extremes in Australia. Clim. Dyn. 54, 4367–4377 (2020).

    Article  Google Scholar 

  209. Maher, N. et al. The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dyn. 14, 413–431 (2023).

    Article  Google Scholar 

  210. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4, 222–227 (2014).

    Article  Google Scholar 

  211. Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).

    Article  Google Scholar 

  212. Gallant, A. J. E., Kiem, A. S., Verdon-Kidd, D. C., Stone, R. C. & Karoly, D. J. Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrol. Earth Syst. Sci. 16, 2049–2068 (2012).

    Article  Google Scholar 

  213. Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).

    Article  Google Scholar 

  214. Denniston, R. F. et al. Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proc. Natl Acad. Sci. USA 112, 4576–4581 (2015).

    Article  Google Scholar 

  215. Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    Article  Google Scholar 

  216. Lou, J., O’Kane, T. J. & Holbrook, N. J. A linear inverse model of tropical and South Pacific seasonal predictability. J. Clim. 33, 4537–4554 (2020).

    Article  Google Scholar 

  217. Patil, K. R., Doi, T., Jayanthi, V. R. & Behera, S. Deep learning for skillful long-lead ENSO forecasts. Front. Clim. 4, 1058677 (2023).

    Article  Google Scholar 

  218. Hobeichi, S. et al. How well do climate modes explain precipitation variability? NPJ Clim. Atmos. Sci. 7, 295 (2024).

    Article  Google Scholar 

  219. Anderson, W. B., Seager, R., Baethgen, W., Cane, M. & You, L. Synchronous crop failures and climate-forced production variability. Sci. Adv. 5, eaaw1976 (2019).

    Article  Google Scholar 

  220. Kessler, W. S. & Cravatte, S. Final Report of TPOS 2020 83 (Tropical Pacific Observing System, 2021).

  221. Quayle, E. T. Long range rainfall forecasting from tropical (Darwin) air pressures. Proc. R. Soc. Vic. 41, 160–164 (1929).

    Google Scholar 

  222. Treolar, H. M. Foreshadowing monsoonal rains in Northern Australia. p. 29. NLA http://nla.gov.au/nla.news-article17127907 (1934).

  223. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Article  Google Scholar 

  224. Evans, A., Jones, D., Lellyett, S., Smalley, R. An Enhanced Gridded Rainfall Analysis Scheme for Australia (Australian Bureau of Meteorology, 2020).

    Google Scholar 

  225. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  226. Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Article  Google Scholar 

  227. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  228. Tropical Cyclone Climatology Maps http://www.bom.gov.au/climate/maps/averages/tropical-cyclones (Bureau of Meteorology, accessed 2 May 2025).

  229. Southern Oscillation Index (SOI) Since 1876 http://www.bom.gov.au/climate/enso/soi/ (Bureau of Meteorology, accessed 2 May 2025).

  230. Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    Article  Google Scholar 

  231. Drosdowsky, W. & Chambers, L. Near-global sea surface temperature anomalies as predictors of Australian seasonal rainfall. J. Clim. 14, 1677–1687 (2001).

    Article  Google Scholar 

  232. Nicholls, N. & Woodcock, F. Verification of an empirical long-range weather forecasting technique. Q. J. R. Meteorol. Soc. 107, 973–976 (1981).

    Google Scholar 

  233. Lim, E.-P., Hendon, H. H., Hudson, D., Wang, G. & Alves, O. Dynamical forecast of Inter–El Niño variations of tropical SST and Australian spring rainfall. Mon. Weather. Rev. 137, 3796–3810 (2009).

    Article  Google Scholar 

  234. Hudson, D. et al. ACCESS-S1 the new Bureau of Meteorology multi-week to seasonal prediction system. JSHESS 67, 132–159 (2017).

    Article  Google Scholar 

  235. Wheeler, M. C. et al. Making progress on the operational alerting of El Nino and La Nina in a warming world. Bull. Am. Meteorol. Soc. 105, E1042–E1044 (2024).

    Article  Google Scholar 

  236. Risbey, J. et al. Standard assessments of climate forecast skill can be misleading. Nat. Commun. 12, 1–14 (2021).

    Article  Google Scholar 

  237. Sharmila, S., Hendon, H., Alves, O., Weisheimer, A. & Balmaseda, M. Contrasting El Niño–La Niña predictability and prediction skill in 2-year reforecasts of the 20th century. J. Clim. 36, 1269–1285 (2023).

    Article  Google Scholar 

  238. Zhao, M., Hendon, H. H., Alves, O., Liu, G. & Wang, G. Weakened Eastern Pacific El Niño predictability in the early twenty-first century. J. Clim. 29, 6805–6822 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

A.S.T., Z.E.G., R.L., L.A., D.D., N.A., A.G., T.L.D., J.G., S.P.-K., N.H., H.H., C.H., S.P., C.C.U. and C.C. thank the Australian Research Council (ARC) CE170100023 for support. A.S.T., S.McG., P.H., A.P., A.K., S.C., H.H., G.B., C.C., P.v.R. and Z.E.G. acknowledge funding from the Climate Systems Hub of the National Environmental Science Program. A.P., G.B., E.-P.L., S.S. and R.McK. received funding from the Department of Energy, Environment, and Climate Action through the Victorian Water and Climate Initiative. T.C. is supported by the Northern Australian Climate Program (NACP) (P.PSH.1381). T.L.D. acknowledges the Melbourne Research Scholarship and the Rowden White Scholarship. J.G. was funded by the Australian National University’s Futures Scheme Project ‘Using historical weather extremes to improve future climate change risk assessment’. D.D., P.v.R. and S.McG. acknowledge funding from ARC DP200102329. K.A. acknowledges funding from ARC FT200100102. The authors thank C. Ganter and R. Naha for constructive comments, and the three reviewers who helped improve this Review.

Author information

Authors and Affiliations

Authors

Contributions

A.S.T. and S.McG. coordinated and led the writing of the manuscript. The study was conceived after a breakout session titled ‘40 Years of ENSO in Australia since McBride and Nicholls (1983)’, held during the 2022 Annual Workshop of the Australian Research Council (ARC) Centre of Excellence for Climate Extremes (CLEX); the breakout session was proposed by A.G. and convened by A.S.T. and S.McG. A subsequent in-person workshop in 2023, supported by CLEX, brought together several co-authors who collaboratively drafted sections of the manuscript as follows: Introduction (N.N., J.McB, L.A., P.H., A.G., and A.S.T.); Dynamics (Z.E.G., W.C. and A.S.T, with contributions from G.W. and A.S.); Complexity (P.v.R., D.D. and S.McG, with input from C.C., G.B., H.H. and R.McK.); ENSO asymmetry (S.P.); Temporal complexity (H.H. and S.P.); Protracted ENSO events (J.G. and R.A.); ENSO–MJO interactions (T.L.D.); ENSO–SAM interactions (E.-P.L.); ENSO–IOD interactions (R.McK.); Terrestrial heatwaves and temperature extremes (S.P.-K.); Rainfall extremes (A.K.); Impacts and hydrology (D.V.-K. and K.A., with contributions from C.H., C.C.U., H.N. and A.S.T. on droughts and floods); Extra-tropical weather systems (A.P. and J.R.); Tropical cyclones (S.C.); South Pacific Convergence Zone (J.R.B.); Bushfires (N.A.); Land processes (S.S.); Agriculture (A.S.T.); Ocean extremes (N.H.); Sea level (X.Z.); Health and economic impacts (N.N.); Observed changes and future projections (D.D., with contributions from S.P., R.L. and S.McG.); Prediction (S.S., T.C., N.N., C.B.-D., E.-P.L. and J.R.); Pre-twentieth century climate and ENSO palaeo-reconstruction (M.F., J.R.B., L.A., J.G. and K.A.); Summary and future perspectives (A.S.T. and S.McG. with contribution from N.N., J.McB., S.P., P.H., A.G., R.A., J.G., L.A. and W.C.). A.S.T. created Figs. 1, 2 and 5; C.C. created Fig. 3; G.B. created Fig. 4; and R.L. created Fig. 6. A.S.T. and S.McG. synthesized all contributions, restructured, edited and shortened the text to ensure a coherent narrative. All authors contributed to the manuscript’s structure, ideas of analysis, figure presentations, discussion and revision.

Corresponding authors

Correspondence to Andréa S. Taschetto or Shayne McGregor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Bin Wang, Paloma Trascasa-Castro and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taschetto, A.S., McGregor, S., Dommenget, D. et al. Climate impacts of the El Niño–Southern Oscillation on Australia. Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00747-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43017-025-00747-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing