Abstract
El Niño–Southern Oscillation (ENSO) profoundly affects Australian weather, climate, ecosystems and socio-economic sectors. In this Review, we summarize the advances in understanding the ENSO–Australian climate relationship, detailing the complexity beyond the traditional assumptions of El Niño-dry and La Niña-wet patterns, including mechanisms and impacts. The influence of ENSO is most coherent during austral spring, explaining about a quarter of rainfall variability over large parts of eastern Australia. La Niña typically exerts more robust rainfall changes than El Niño, and the Central Pacific El Niño has greater impacts than Eastern Pacific events. These effects are amplified by prolonged ENSO episodes and modulated by land–atmosphere feedback, surrounding sea surface temperatures, local processes and interactions with other climate modes, including multidecadal variability. El Niño-related drying generally worsens when co-occurring with positive Indian Ocean Dipole (IOD) and/or negative Southern Annular Mode (SAM), whereas La Niña rainfall intensifies with negative IOD and/or positive SAM. Although ENSO predictability has improved with advanced understanding of ocean processes and dynamical forecasting, predicting its impacts is challenging because of large internal atmospheric variability. Ongoing changes in ENSO underscore the need for strategic research, continuous in situ monitoring, reduced model biases and deeper understanding of the anthropogenically induced changes in Pacific temperatures to guide adaptation strategies.
Key points
-
El Niño–Southern Oscillation (ENSO) is the foremost climatic phenomenon impacting eastern Australia in terms of intensity and spatial coverage.
-
ENSO impacts large-scale atmospheric circulation to Australia directly via changes in sea level pressure related to the Southern Oscillation and indirectly through changes in Indian Ocean sea surface temperatures and associated wave trains to the Australian extra-tropics.
-
Local processes driven by the surrounding sea surface temperatures and winds crucially alter evaporation, humidity and moisture advection inland, modulating rainfall patterns during ENSO events.
-
The ENSO–Australian rainfall relationship is asymmetric and stronger for La Niña. This relationship varies over multidecadal cycles, peaking during the Interdecadal Pacific Oscillation negative phase.
-
The influence of ENSO on Australian rainfall usually intensifies during multi-year events and is often modulated by other climate variability such as Indian Ocean Dipole, Southern Annular Mode and Madden–Julian Oscillation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Jevons, W. S. in Waugh’s Australian Almanac for the Year 1859 (ed. Waugh, J. W.) 47–98 (Sydney Gazette, 1859).
Taungurung Clans Country Plan Vol. 27, 34 (Taungurung Clans Aboriginal Corporation, 2016).
Todd, C. Droughts in Australia. Their causes, duration, and effect. The South Australian Advertiser 5–6 (29 December 1888).
Walker, G. T. Correlation in seasonal variations of weather—a further study of world weather. Mem. Indian. Meteorol. Dep. 24, 275–332 (1924).
Troup, A. J. The ‘Southern Oscillation’. Q. J. R. Meteorol. Soc. 91, 490–506 (1965).
Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather. Rev. 97, 163–172 (1969).
Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather. Rev. 110, 354–384 (1982).
Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather. Rev. 115, 1606–1626 (1987).
Mcphaden, M. J., Busalacchi, A. J. & Anderson, D. L. T. A Toga retrospective. Oceanography 23, 86–103 (2010).
Gill, A. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).
Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).
Wyrtki, K. Water displacements in the Pacific and the genesis of El Nino cycles. J. Geophys. Res. Ocean. 90, 7129–7132 (1985).
Cane, M. A. & Zebiak, S. E. A theory for El Niño and the Southern Oscillation. Science 228, 1085–1087 (1985).
Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).
Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).
Vialard, J. et al. The El Niño Southern Oscillation (ENSO) recharge oscillator conceptual model: achievements and future prospects. Rev. Geophys. 63, e2024RG000843 (2025).
McBride, J. L. & Nicholls, N. Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Weather. Rev. 111, 1998–2004 (1983).
Hammer, G. L. et al. Advances in application of climate prediction in agriculture. Agric. Syst. 70, 515–553 (2001).
Wang, G. & Hendon, H. H. Sensitivity of Australian rainfall to inter–El Niño variations. J. Clim. 20, 4211–4226 (2007).
Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Env. 2, 628–644 (2021).
Karoly, D. J. Southern hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).
Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).
Nicholls, N. Sea surface temperatures and Australian winter rainfall. J. Clim. 2, 965–973 (1989).
Rakich, C. S., Holbrook, N. J. & Timbal, B. A pressure gradient metric capturing planetary-scale influences on eastern Australian rainfall. Geophys. Res. Lett. 35, L08713 (2008).
Holgate, C., Evans, J. P., Taschetto, A. S., Sen Gupta, A. & Santoso, A. The impact of interacting climate modes on East Australian precipitation moisture sources. J. Clim. 35, 3147–3159 (2022).
van Rensch, P., Gallant, A. J. E., Cai, W. & Nicholls, N. Evidence of local sea surface temperatures overriding the southeast Australian rainfall response to the 1997–1998 El Niño. Geophys. Res. Lett. 42, 9449–9456 (2015).
Evans, J. P. & Boyer-Souchet, I. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett. 39, L10803–L11080 (2012).
Ummenhofer, C. C. et al. How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event? Geophys. Res. Lett. 42, 9942–9951 (2015).
Sardeshmukh, P. D. & Hoskins, B. J. Vorticity balances in the tropics during the 1982–83 El Niño–Southern Oscillation event. Q. J. R. Meteorol. Soc. 111, 261–278 (1985).
Mo, K. C. & Ghil, M. Statistics and dynamics of persistent anomalies. J. Atmos. Sci. 44, 877–902 (1987).
Ambrizzi, T., Hoskins, B. J. & Hsu, H.-H. Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci. 52, 3661–3672 (1995).
Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather. Rev. 137, 3233–3253 (2009).
Saji, N., Goswami, B., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).
McIntosh, P. C. & Hendon, H. H. Understanding Rossby wave trains forced by the Indian Ocean Dipole. Clim. Dyn. 50, 2783–2798 (2018).
Seager, R., Harnik, N., Kushnir, Y., Robinson, W. & Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 16, 2960–2978 (2003).
Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).
L’Heureux, M. L. & Thompson, D. Observed relationships between the El Nino–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).
Lim, E.-P., Hendon, H. H. & Rashid, H. Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).
Hendon, H. H., Thompson, D. W. J. & Wheeler, M. C. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Clim. 20, 2452–2467 (2007).
Brown, J. R. et al. South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Env. 1, 530–543 (2020).
Cai, W., van Rensch, P., Cowan, T. & Sullivan, A. Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Clim. 23, 4944–4955 (2010).
Hendon, H. H. Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J. Clim. 16, 1775–1790 (2003).
Hendon, H. H., Lim, E.-P. & Liu, G. The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J. Clim. 25, 1278–1290 (2012).
Klein, S. A., Soden, B. J. & Lau, N.-C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Clim. 12, 917–932 (1999).
Tokinaga, H. & Tanimoto, Y. Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteorol. Soc. Japan. Ser. II 82, 1007–1018 (2004).
Taschetto, A. S., Sen Gupta, A., Hendon, H. H., Ummenhofer, C. C. & England, M. H. The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J. Clim. 24, 3734–3747 (2011).
Cai, W. & van Rensch, P. Austral summer teleconnections of Indo-Pacific variability: their nonlinearity and impacts on Australian climate. J. Clim. 26, 2796–2810 (2013).
Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Clim. 25, 6318–6329 (2012).
Pook, M. J., McIntosh, P. C. & Meyers, G. A. The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteorol. Climatol. 45, 1156–1170 (2006).
Gillett, Z. E., Taschetto, A. S., Holgate, C. M. & Santoso, A. Linking ENSO to synoptic weather systems in eastern Australia. Geophys. Res. Lett. 50, e2023GL104814 (2023).
Fogt, R.L., Bromwich, D.H. & Hines, K.M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).
Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).
Hoerling, M. P., Kumar, A. & Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 10, 1769–1786 (1997).
Frauen, C., Dommenget, D., Tyrrell, N. & Rezny, M. Analysis of the non-linearity of El Niño Southern Oscillation teleconnections. J. Clim. 27, 6225–6244 (2014).
Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 112, C11007 (2007).
Taschetto, A. S. & England, M. H. El Niño Modoki impacts on Australian rainfall. J. Clim. 22, 3167–3174 (2009).
Jones, D. A. & Trewin, B. C. On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int. J. Climatol. 20, 697–719 (2000).
Budin, G. R. Interannual variability of Australian snowfall. Aust. Meteorol. Mag. 33, 145–159 (1985).
Pepler, A. S., Trewin, B. & Ganter, C. The influences of climate drivers on the Australian snow season. Aust. Meteor. Ocean. J. 65, 195–205 (2015).
Crimp, S. et al. Synoptic to large-scale drivers of minimum temperature variability in Australia—long-term changes. Int. J. Climatol. 38, e237–e254 (2018).
Stone, R., Hammer, G. & Nicholls, N. Frost in northeast Australia: trends and influences of phases of the Southern Oscillation. J. Clim. 9, 1896–1909 (1996).
Gillett, Z. E., Hendon, H. H., Arblaster, J. M. & Lin, H. Sensitivity of the southern hemisphere wintertime teleconnection to the location of ENSO heating. J. Clim. 36, 2497–2514 (2023).
Chung, C. T. Y. & Power, S. B. The non-linear impact of El Nino, La Nina and the Southern Oscillation on seasonal and regional Australian precipitation. JSHESS 67, 25–45 (2017).
McGregor, S., Gallant, A. & van Rensch, P. Quantifying ENSOs impact on Australia’s regional monthly rainfall risk. Geophys. Res. Lett. 51, e2023GL106298 (2024).
King, A. D., Alexander, L. V. & Donat, M. G. Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett. 40, 2271–2277 (2013).
Lieber, R., Brown, J., King, A. & Freund, M. Historical and future asymmetry of ENSO teleconnections with extremes. J. Clim. 37, 5909–5924 (2024).
He, J., Li, S., Wang, B., Zhang, L. & Duan, K. Quantifying the impacts of ENSO on Australian summer rainfall extremes during 1960–2020. J. Hydrol. 654, 132834 (2025).
Power, S., Haylock, M., Colman, R. & Wang, X. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 19, 4755–4771 (2006).
Arblaster, J. M. & Alexander, L. V. The impact of the El Niño–Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett. 39, L20702 (2012).
Perkins, S. E., Argüeso, D. & White, C. J. Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophys. Res. Atmos. 120, 8144–8164 (2015).
Loughran, T. F., Perkins-Kirkpatrick, S. E. & Alexander, L. V. Understanding the spatio-temporal influence of climate variability on Australian heatwaves. Int. J. Climatol. 37, 3963–3975 (2017).
Reddy, P. J., Perkins-Kirkpatrick, S. E., Ridder, N. N. & Sharples, J. J. Combined role of ENSO and IOD on compound drought and heatwaves in Australia using two CMIP6 large ensembles. Weather. Clim. Extremes 37, 100469 (2022).
Parker, T. J., Berry, G. J., Reeder, M. J. & Nicholls, N. Modes of climate variability and heat waves in Victoria, southeastern Australia. Geophys. Res. Lett. 41, 6926–6934 (2014).
Boschat, G. et al. Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Clim. Dyn. 44, 1823–1840 (2015).
Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).
Taschetto, A. S., Ummenhofer, C. C., Sen Gupta, A. & England, M. H. Effect of anomalous warming in the central Pacific on the Australian monsoon. Geophys. Res. Lett. 36, L12704 (2009).
Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 65–86 (American Geophysical Union, 2020).
Chung, C. et al. Evaluation of seasonal teleconnections to remote drivers of Australian rainfall in CMIP5 and CMIP6 models. JSHESS 73, 219–261 (2023).
Kug, J.-S. & Ham, Y.-G. Are there two types of La Nina? Geophys. Res. Lett. 38, L16704 (2011).
Freund, M. B., Marshall, A. G., Wheeler, M. C. & Brown, J. N. Central Pacific El Niño as a precursor to summer drought-breaking rainfall over southeastern Australia. Geophys. Res. Lett. 48, e2020GL091131 (2021).
Ma, Y., Sun, J., Dong, T., Yu, W. & Dong, W. More profound impact of CP ENSO on Australian spring rainfall in recent decades. Clim. Dyn. 60, 3065–3079 (2023).
Loughran, T. F., Perkins-Kirkpatrick, S. E., Alexander, L. V. & Pitman, A. J. No significant difference between Australian heat wave impacts of Modoki and eastern Pacific El Niño. Geophys. Res. Lett. 44, 5150–5157 (2017).
Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).
Lim, E.-P., Hendon, H. H., Zhao, M. & Yin, Y. Inter-decadal variations in the linkages between ENSO, the IOD and south-eastern Australian springtime rainfall in the past 30 years. Clim. Dyn. 49, 97–112 (2017).
Sharmila, S. & Hendon, H. H. Mechanisms of multiyear variations of Northern Australia wet-season rainfall. Sci. Rep. 10, 5086 (2020).
Heidemann, H. et al. The influence of interannual and decadal Indo-Pacific sea surface temperature variability on Australian monsoon rainfall. J. Clim. 35, 425–444 (2022).
Folland, C. K. Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett. 29, 1643 (2002).
Mcgregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 4, 888–892 (2014).
Trascasa-Castro, P., Maycock, A. C., Ruprich-Robert, Y., Turco, M. & Staten, P. W. Atlantic multidecadal variability modulates the climate impacts of El Niño–Southern Oscillation in Australia. Environ. Res. Lett. 18, 084029 (2023).
Wreford, D., McGregor, S. & Naha, R. Modulation in teleconnections of the El Nino Southern Oscillation by Atlantic multidecadal sea surface temperature variability. Geophys. Res. Lett. 51, e2023GL107404 (2024).
Liu, G., Li, J. & Ying, T. Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia. Atmos. Chem. Phys. 23, 9217–9228 (2023).
Allan, R. J. & D’Arrigo, R. D. ‘Persistent’ ENSO sequences: how unusual was the 1990–1995 El Niño? Holocene 9, 101–118 (1999).
Black, A. et al. Australian northwest cloudbands and their relationship to atmospheric rivers and precipitation. Mon. Weather. Rev. 149, 1125–1139 (2021).
Allan, R. et al. The context of the 2018–20 “Protracted” El Niño Episode: Australian drought and terrestrial, marine, and ecophysiological impacts. Weather Climate Soc. 15, 727–746 (2023).
Okumura, Y. M. & Deser, C. Asymmetry in the duration of El Niño and La Niña. J. Clim. 23, 5826–5843 (2010).
Dommenget, D., Bayr, T. & Frauen, C. Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim. Dyn. 40, 2825–2847 (2013).
Huang, A. T., Gillett, Z. E. & Taschetto, A. S. Australian rainfall increases during multi-year La Niña. Geophys. Res. Lett. 51, e2023GL106939 (2024).
Lu, Z. et al. Increased frequency of multi-year El Niño–Southern Oscillation events across the Holocene. Nat. Geosci. 18, 337–343 (2025).
Allan, R. J., Gergis, J. & D’Arrigo, R. D. Placing the AD 2014–2016 ‘protracted’ El Niño episode into a long-term context. Holocene 30, 90–105 (2020).
Reid, K. J. et al. A multiscale evaluation of the wet 2022 in eastern Australia. J. Clim. 38, 909–929 (2025).
Extreme Rainfall and Flooding in South-Eastern Queensland and Eastern New South Wales (Bureau of Meteorology, 2022); http://www.bom.gov.au/climate/current/statements/scs76.pdf.
Liguori, G., McGregor, S., Singh, M., Arblaster, J. & Di Lorenzo, E. Revisiting ENSO and IOD contributions to Australian precipitation. Geophys. Res. Lett. 49, e2021GL094295 (2022).
Ummenhofer, C. C. et al. Indian and Pacific Ocean influences on Southeast Australian drought and soil moisture. J. Clim. 24, 1313–1336 (2011).
Pepler, A., Timbal, B., Rakich, C. & Coutts-Smith, A. Indian Ocean dipole overrides ENSO’s influence on cool season rainfall across the eastern seaboard of Australia. J. Clim. 27, 3816–3826 (2014).
White, C. J., Hudson, D. & Alves, O. ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Clim. Dyn. 43, 1791–1810 (2014).
Wilson, A. B., Bromwich, D. H. & Hines, K. M. Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Clim. 29, 2291–2309 (2016).
Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the southern hemisphere. WIREs Clim. Chang. 11, e652 (2020).
Meneghini, B., Simmonds, I. & Smith, I. N. Association between Australian rainfall and the Southern Annular Mode. Int. J. Climatol. 27, 109–121 (2007).
Hendon, H. H., Lim, E.-P., Arblaster, J. M. & Anderson, D. L. T. Causes and predictability of the record wet east Australian spring 2010. Clim. Dyn. 42, 1155–1174 (2014).
Lim, E.-P. & Hendon, H. H. Understanding and predicting the strong Southern Annular Mode and its impact on the record wet east Australian spring 2010. Clim. Dyn. 44, 2807–2824 (2015).
Ghelani, R. P. S., Oliver, E. C. J., Holbrook, N. J., Wheeler, M. C. & Klotzbach, P. J. Joint modulation of intraseasonal rainfall in tropical Australia by the Madden–Julian Oscillation and El Niño–Southern Oscillation. Geophys. Res. Lett. 44, 10,754–10,761 (2017).
Cowan, T., Wheeler, M. C. & Marshall, A. G. The combined influence of the Madden–Julian Oscillation and El Niño–Southern Oscillation on Australian rainfall. J. Clim. 36, 313–334 (2023).
Dao, T. L., Vincent, C. L. & Lane, T. P. Multiscale influences on rainfall in northeast Australia. J. Clim. 36, 5989–6006 (2023).
Marshall, A. G., Wheeler, M. C. & Cowan, T. Madden–Julian Oscillation impacts on Australian temperatures and extremes. J. Clim. 36, 335–357 (2023).
Nicholls, N. A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Weather. Rev. 107, 1221–1224 (1979).
Dowdy, A. J. Long-term changes in Australian tropical cyclone numbers. Atmos. Sci. Lett. 15, 292–298 (2014).
Chand, S. S. et al. Review of tropical cyclones in the Australian region: climatology, variability, predictability, and trends. WIREs Clim. Chang. 10, e602 (2019).
Callaghan, J. & Power, S. B. Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim. Dyn. 37, 647–662 (2011).
Chand, S. S., McBride, J. L., Tory, K. J., Wheeler, M. C. & Walsh, K. J. E. Impact of different ENSO regimes on southwest Pacific tropical cyclones. J. Clim. 26, 600–608 (2013).
Ramsay, H. A., Richman, M. B. & Leslie, L. M. Seasonal tropical cyclone predictions using optimized combinations of ENSO regions: application to the Coral Sea Basin. J. Clim. 27, 8527–8542 (2014).
Greenslade, J. & Gregory, P. Towards an Improved Bureau Seasonal Cyclone Outlook Bureau Research Report No. 076 (Bureau of Meteorology, 2023).
Pepler, A., Dowdy, A. & Hope, P. A global climatology of surface anticyclones, their variability, associated drivers and long-term trends. Clim. Dyn. 52, 5397–5412 (2019).
Pepler, A. S. et al. Impact of identification method on the inferred characteristics and variability of Australian east coast lows. Mon. Weather. Rev. 143, 864–877 (2015).
Rudeva, I. & Simmonds, I. Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Clim. 28, 3311–3330 (2015).
Callaghan, J. & Power, S. B. Major coastal flooding in southeastern Australia, associated deaths and weather systems. Aust. Meteor. Ocean. J. 64, 183–213 (2014).
Power, S. B. & Callaghan, J. Variability in severe coastal flooding, associated storms, and death tolls in southeastern Australia since the mid-nineteenth century. J. Appl. Meteorol. Climatol. 55, 1139–1149 (2016).
Allen, J. T., Karoly, D. J. & Walsh, K. J. Future Australian severe thunderstorm environments. Part I: a novel evaluation and climatology of convective parameters from two climate models for the late twentieth century. J. Clim. 27, 3827–3847 (2014).
Dowdy, A. J. Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn. 54, 3041–3052 (2020).
Azorin-Molina, C. et al. A decline of observed daily peak wind gusts with distinct seasonality in Australia, 1941–2016. J. Clim. 34, 3103–3127 (2021).
Tut, Q. F., Raupach, T. H. & Taschetto, A. S. Links between hail hazard and climate modes of variability across Australia. Q. J. R. Meteorol. Soc. 151, e4985 (2025).
Hauser, S. et al. A weather system perspective on winter–spring rainfall variability in southeastern Australia during El Niño. Q. J. R. Meteorol. Soc. 146, 2614–2633 (2020).
Pepler, A., Coutts-Smith, A. & Timbal, B. The role of east coast lows on rainfall patterns and inter-annual variability across the East Coast of Australia. Int. J. Climatol. 34, 1011–1021 (2014).
Holgate, C. M. et al. Physical mechanisms of meteorological drought development, intensification and termination: an Australian review. Commun. Earth Env. 6, 220 (2025).
Tozer, C. R. et al. Impacts of ENSO on Australian rainfall: what not to expect. JSHESS 73, 77–81 (2023).
Parker, T., Gallant, A., Hobbins, M. & Hoffmann, D. Flash drought in Australia and its relationship to evaporative demand. Environ. Res. Lett. 16, 064033 (2021).
Gibson, A. J., Verdon-Kidd, D. C. & Hancock, G. R. Characterising the seasonal nature of meteorological drought onset and termination across Australia. JSHESS 72, 38–51 (2022).
Verdon-Kidd, D. C. & Kiem, A. S. Quantifying drought risk in a nonstationary climate. J. Hydrometeorol. 11, 1019–1031 (2010).
Parker, T. & Gallant, A. J. E. The role of heavy rainfall in drought in Australia. Weather. Clim. Extremes 38, 100528 (2022).
Verdon, D. C., Wyatt, A. M., Kiem, A. S. & Franks, S. W. Multidecadal variability of rainfall and streamflow: Eastern Australia. Water Resour. Res. 40, W10201 (2004).
Pook, M. J., Risbey, J. S., Ummenhofer, C. C., Briggs, P. R. & Cohen, T. J. A synoptic climatology of heavy rain events in the Lake Eyre and Lake Frome catchments. Front. Environ. Sci. 2, 54 (2014).
Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 36, L04706 (2009).
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Chang. 10, 177–179 (2020).
Holgate, C. M., Evans, J. P., van Dijk, A. I. J. M., Pitman, A. J. & Virgilio, G. D. Australian precipitation recycling and evaporative source regions. J. Clim. 33, 8721–8735 (2020).
Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Env. 2, 1–17 (2021).
Verdon, D. C., Kiem, A. S. & Franks, S. W. Multi-decadal variability of forest fire risk—eastern Australia. Int. J. Wildland Fire 13, 165–171 (2004).
Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).
Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS One 14, e0222328 (2019).
Squire, D. et al. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. NPJ Clim. Atmos. Sci. 4, 1–12 (2021).
Mariani, M., Fletcher, M.-S., Holz, A. & Nyman, P. ENSO controls interannual fire activity in southeast Australia. Geophys. Res. Lett. 43, 10,891–10,900 (2016).
Richardson, D. et al. Global increase in wildfire potential from compound fire weather and drought. NPJ Clim. Atmos. Sci. 5, 23 (2022).
Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Chang. 7, 906–911 (2017).
Greenville, A. C., Dickman, C. R., Wardle, G. M. & Letnic, M. The fire history of an arid grassland: the influence of antecedent rainfall and ENSO. Int. J. Wildland Fire 18, 631–639 (2009).
Biswas, S., Chand, S. S., Dowdy, A. J. & Sharma, K. Australian fire weather variability using calibrated long-term reanalysis data. Discov. Env. 3, 31 (2025).
Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).
Wang, G. & Cai, W. Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geosci. Lett. 7, 19 (2020).
Richardson, D. et al. Increasing fire weather season overlap between North America and Australia challenges firefighting cooperation. Earth’s Future 13, e2024EF005030 (2025).
Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, L19710 (2009).
Devanand, A. et al. Australia’s Tinderbox Drought: an extreme natural event likely worsened by human-caused climate change. Sci. Adv. 10, eadj3460 (2024).
Holbrook, N. J. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 409–428 (American Geophysical Union, 2020).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).
Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).
Feng, M., McPhaden, M. J., Xie, S.-P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1277 (2013).
Gregory, C. H. et al. Global marine heatwaves under different flavors of ENSO. Geophys. Res. Lett. 51, e2024GL110399 (2024).
Pearce, A. F. & Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78–82 (2013).
Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Li, Z., Zhang, X. & Holbrook, N. J. Insights into contrasting ENSO influence on SST variations off Australia’s southeast and west coasts. NPJ Clim. Atmos. Sci. 8, 229 (2025).
Oliver, E. C. J. & Holbrook, N. J. Variability and long-term trends in the shelf circulation off eastern Tasmania. J. Geophys. Res. Ocean. 123, 7366–7381 (2018).
Cetina-Heredia, P., Roughan, M., van Sebille, E. & Coleman, M. A. Long-term trends in the East Australian Current separation latitude and eddy driven transport. J. Geophys. Res. Ocean. 119, 4351–4366 (2014).
Gregory, C. H., Holbrook, N. J., Marshall, A. G. & Spillman, C. M. Atmospheric drivers of Tasman Sea marine heatwaves. J. Clim. 36, 5197–5214 (2023).
Lough, J. M. Climate variation and El Niño–Southern Oscillation events on the Great Barrier Reef: 1958 to 1987. Coral Reefs 13, 181–185 (1994).
Lough, J. M. 1997–98: unprecedented thermal stress to coral reefs? Geophys. Res. Lett. 27, 3901–3904 (2000).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).
Wijffels, S. & Meyers, G. An intersection of oceanic waveguides: variability in the Indonesian throughflow region. J. Phys. Oceanogr. 34, 1232–1253 (2004).
Holmes, R. M., Smith, G. A. & Spillman, C. M. Seasonal sea level forecasts for the Australian coast. JSHESS 75, ES24047 (2025).
Zhang, X. & Church, J. A. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 39, L21701 (2012).
White, N. J. et al. Australian sea levels—trends, regional variability and influencing factors. Earth-Sci. Rev. 136, 155–174 (2014).
Abhik, S. et al. Influence of the 2015–2016 El Niño on the record-breaking mangrove dieback along northern Australia coast. Sci. Rep. 11, 20411 (2021).
Sprintall, J., Cravatte, S., Dewitte, B., Du, Y. & Sen Gupta, A. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 337–359 (American Geophysical Union, 2020).
Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).
Stone, R. C., Hammer, G. L. & Marcussen, T. Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384, 252–255 (1996).
Zheng, B., Chapman, S. C., Christopher, J. T., Frederiks, T. M. & Chenu, K. Frost trends and their estimated impact on yield in the Australian wheatbelt. J. Exp. Bot. 66, 3611–3623 (2015).
Welsh, J. M., Taschetto, A. S. & Quinn, J. P. Climate and agricultural risk: assessing the impacts of major climate drivers on Australian cotton production. Eur. J. Agron. 140, 126604 (2022).
Yuan, C. & Yamagata, T. Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Sci. Rep. 5, 17252 (2015).
Feng, P. et al. Increasing dominance of Indian Ocean variability impacts Australian wheat yields. Nat. Food 3, 862–870 (2022).
Tong, S. et al. Climate variability, social and environmental factors, and Ross River virus transmission: research development and future research needs. Environ. Health Perspect. 116, 1591–1597 (2008).
Nicholls, N. A method for predicting murray valley encephalitis in southeast Australia using the Southern Oscillation. Aust. J. Exp. Biol. Med. Sci. 64, 587–594 (1986).
Braddick, M. et al. An integrated public health response to an outbreak of Murray Valley encephalitis virus infection during the 2022–2023 mosquito season in Victoria. Front. Public. Health 11, 1256149 (2023).
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim. Past. 9, 2269–2284 (2013).
Ashcroft, L., Gergis, J. & Karoly, D. J. Long-term stationarity of El Niño–Southern Oscillation teleconnections in southeastern Australia. Clim. Dyn. 46, 2991–3006 (2016).
Freund, M. B. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).
Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Env. 4, 407–418 (2023).
Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).
Power, S. B., Delage, F. P. D., Chung, C. T. Y., Ye, H. & Murphy, B. F. Humans have already increased the risk of major disruptions to Pacific rainfall. Nat. Commun. 8, 14368 (2017).
Lieber, R. et al. ENSO teleconnections more uncertain in regions of lower socioeconomic development. Geophys. Res. Lett. 49, e2022GL100553 (2022).
Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).
Power, S. et al. Decadal climate variability in the tropical Pacific: characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021).
Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Env. 4, 754–769 (2023).
Geng, T. et al. Increased occurrences of consecutive La Niña events under global warming. Nature 619, 774–781 (2023).
Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541 (2013).
Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).
Power, S. B. & Delage, F. P. D. El Niño–Southern oscillation and associated climatic conditions around the world during the latter half of the twenty-first century. J. Clim. 31, 6189–6207 (2018).
McGregor, S., Cassou, C., Kosaka, Y. & Phillips, A. S. Projected ENSO teleconnection changes in CMIP6. Geophys. Res. Lett. 49, e2021GL097511 (2022).
Perry, S. J., McGregor, S., Sen Gupta, A., England, M. H. & Maher, N. Projected late 21st century changes to the regional impacts of the El Niño–Southern Oscillation. Clim. Dyn. 54, 395–412 (2020).
Delage, F. P. D. & Power, S. B. The impact of global warming and the El Niño–Southern Oscillation on seasonal precipitation extremes in Australia. Clim. Dyn. 54, 4367–4377 (2020).
Maher, N. et al. The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dyn. 14, 413–431 (2023).
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4, 222–227 (2014).
Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).
Gallant, A. J. E., Kiem, A. S., Verdon-Kidd, D. C., Stone, R. C. & Karoly, D. J. Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrol. Earth Syst. Sci. 16, 2049–2068 (2012).
Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).
Denniston, R. F. et al. Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proc. Natl Acad. Sci. USA 112, 4576–4581 (2015).
Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).
Lou, J., O’Kane, T. J. & Holbrook, N. J. A linear inverse model of tropical and South Pacific seasonal predictability. J. Clim. 33, 4537–4554 (2020).
Patil, K. R., Doi, T., Jayanthi, V. R. & Behera, S. Deep learning for skillful long-lead ENSO forecasts. Front. Clim. 4, 1058677 (2023).
Hobeichi, S. et al. How well do climate modes explain precipitation variability? NPJ Clim. Atmos. Sci. 7, 295 (2024).
Anderson, W. B., Seager, R., Baethgen, W., Cane, M. & You, L. Synchronous crop failures and climate-forced production variability. Sci. Adv. 5, eaaw1976 (2019).
Kessler, W. S. & Cravatte, S. Final Report of TPOS 2020 83 (Tropical Pacific Observing System, 2021).
Quayle, E. T. Long range rainfall forecasting from tropical (Darwin) air pressures. Proc. R. Soc. Vic. 41, 160–164 (1929).
Treolar, H. M. Foreshadowing monsoonal rains in Northern Australia. p. 29. NLA http://nla.gov.au/nla.news-article17127907 (1934).
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
Evans, A., Jones, D., Lellyett, S., Smalley, R. An Enhanced Gridded Rainfall Analysis Scheme for Australia (Australian Bureau of Meteorology, 2020).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).
Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).
Tropical Cyclone Climatology Maps http://www.bom.gov.au/climate/maps/averages/tropical-cyclones (Bureau of Meteorology, accessed 2 May 2025).
Southern Oscillation Index (SOI) Since 1876 http://www.bom.gov.au/climate/enso/soi/ (Bureau of Meteorology, accessed 2 May 2025).
Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).
Drosdowsky, W. & Chambers, L. Near-global sea surface temperature anomalies as predictors of Australian seasonal rainfall. J. Clim. 14, 1677–1687 (2001).
Nicholls, N. & Woodcock, F. Verification of an empirical long-range weather forecasting technique. Q. J. R. Meteorol. Soc. 107, 973–976 (1981).
Lim, E.-P., Hendon, H. H., Hudson, D., Wang, G. & Alves, O. Dynamical forecast of Inter–El Niño variations of tropical SST and Australian spring rainfall. Mon. Weather. Rev. 137, 3796–3810 (2009).
Hudson, D. et al. ACCESS-S1 the new Bureau of Meteorology multi-week to seasonal prediction system. JSHESS 67, 132–159 (2017).
Wheeler, M. C. et al. Making progress on the operational alerting of El Nino and La Nina in a warming world. Bull. Am. Meteorol. Soc. 105, E1042–E1044 (2024).
Risbey, J. et al. Standard assessments of climate forecast skill can be misleading. Nat. Commun. 12, 1–14 (2021).
Sharmila, S., Hendon, H., Alves, O., Weisheimer, A. & Balmaseda, M. Contrasting El Niño–La Niña predictability and prediction skill in 2-year reforecasts of the 20th century. J. Clim. 36, 1269–1285 (2023).
Zhao, M., Hendon, H. H., Alves, O., Liu, G. & Wang, G. Weakened Eastern Pacific El Niño predictability in the early twenty-first century. J. Clim. 29, 6805–6822 (2016).
Acknowledgements
A.S.T., Z.E.G., R.L., L.A., D.D., N.A., A.G., T.L.D., J.G., S.P.-K., N.H., H.H., C.H., S.P., C.C.U. and C.C. thank the Australian Research Council (ARC) CE170100023 for support. A.S.T., S.McG., P.H., A.P., A.K., S.C., H.H., G.B., C.C., P.v.R. and Z.E.G. acknowledge funding from the Climate Systems Hub of the National Environmental Science Program. A.P., G.B., E.-P.L., S.S. and R.McK. received funding from the Department of Energy, Environment, and Climate Action through the Victorian Water and Climate Initiative. T.C. is supported by the Northern Australian Climate Program (NACP) (P.PSH.1381). T.L.D. acknowledges the Melbourne Research Scholarship and the Rowden White Scholarship. J.G. was funded by the Australian National University’s Futures Scheme Project ‘Using historical weather extremes to improve future climate change risk assessment’. D.D., P.v.R. and S.McG. acknowledge funding from ARC DP200102329. K.A. acknowledges funding from ARC FT200100102. The authors thank C. Ganter and R. Naha for constructive comments, and the three reviewers who helped improve this Review.
Author information
Authors and Affiliations
Contributions
A.S.T. and S.McG. coordinated and led the writing of the manuscript. The study was conceived after a breakout session titled ‘40 Years of ENSO in Australia since McBride and Nicholls (1983)’, held during the 2022 Annual Workshop of the Australian Research Council (ARC) Centre of Excellence for Climate Extremes (CLEX); the breakout session was proposed by A.G. and convened by A.S.T. and S.McG. A subsequent in-person workshop in 2023, supported by CLEX, brought together several co-authors who collaboratively drafted sections of the manuscript as follows: Introduction (N.N., J.McB, L.A., P.H., A.G., and A.S.T.); Dynamics (Z.E.G., W.C. and A.S.T, with contributions from G.W. and A.S.); Complexity (P.v.R., D.D. and S.McG, with input from C.C., G.B., H.H. and R.McK.); ENSO asymmetry (S.P.); Temporal complexity (H.H. and S.P.); Protracted ENSO events (J.G. and R.A.); ENSO–MJO interactions (T.L.D.); ENSO–SAM interactions (E.-P.L.); ENSO–IOD interactions (R.McK.); Terrestrial heatwaves and temperature extremes (S.P.-K.); Rainfall extremes (A.K.); Impacts and hydrology (D.V.-K. and K.A., with contributions from C.H., C.C.U., H.N. and A.S.T. on droughts and floods); Extra-tropical weather systems (A.P. and J.R.); Tropical cyclones (S.C.); South Pacific Convergence Zone (J.R.B.); Bushfires (N.A.); Land processes (S.S.); Agriculture (A.S.T.); Ocean extremes (N.H.); Sea level (X.Z.); Health and economic impacts (N.N.); Observed changes and future projections (D.D., with contributions from S.P., R.L. and S.McG.); Prediction (S.S., T.C., N.N., C.B.-D., E.-P.L. and J.R.); Pre-twentieth century climate and ENSO palaeo-reconstruction (M.F., J.R.B., L.A., J.G. and K.A.); Summary and future perspectives (A.S.T. and S.McG. with contribution from N.N., J.McB., S.P., P.H., A.G., R.A., J.G., L.A. and W.C.). A.S.T. created Figs. 1, 2 and 5; C.C. created Fig. 3; G.B. created Fig. 4; and R.L. created Fig. 6. A.S.T. and S.McG. synthesized all contributions, restructured, edited and shortened the text to ensure a coherent narrative. All authors contributed to the manuscript’s structure, ideas of analysis, figure presentations, discussion and revision.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Bin Wang, Paloma Trascasa-Castro and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Taschetto, A.S., McGregor, S., Dommenget, D. et al. Climate impacts of the El Niño–Southern Oscillation on Australia. Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00747-x
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43017-025-00747-x


