Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 January 2026

Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India

  • Ambrish Kumar Pandey  ORCID: orcid.org/0009-0002-1834-33031,
  • Amar Agarwal  ORCID: orcid.org/0000-0003-1011-47841,
  • Gaurav Joshi1,
  • Satish Sangode2 &
  • …
  • Mamilla Venkateshwarlu3 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 2992 Accesses

  • 10 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geomagnetism
  • Meteoritics
  • Palaeomagnetism

Abstract

Impact-generated shock waves can modify the remanent magnetization preserved in target rocks, yet their effects remain poorly constrained. Here we examine how shock waves modify rock magnetization by analysing unshocked granitoids and diorites, and shock-affected monomict breccia and impact melt rock of the Paleoproterozoic Dhala impact structure in India. Microscopic, thermomagnetic and hysteresis analyses were used to identify magnetic minerals and their domain states. Remanent magnetization and demagnetization experiments were performed to evaluate shock effects on the palaeomagnetic behaviour of impact-generated and unshocked target rocks. The unshocked rocks contain strong and stable magnetization carried by titanomagnetite. In contrast, the monomict breccia carries titanomagnetite and titanohematite and shows extremely weak and unstable magnetization, consistent with shock-related grain-size reduction and microfracturing. Impact melt rocks display intermediate behaviour, with titanomagnetite, titanohematite and pyrrhotite as magnetic carriers. These results show that shock can substantially reduce crustal magnetization. The results help to explain weak magnetic signatures at terrestrial and planetary impact structures, even in the presence of an ambient magnetic field.

Similar content being viewed by others

Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe, New Mexico

Article Open access 17 November 2021

Magnetic signatures of a creosote oil contaminated site: case study in São Paulo, Brazil

Article Open access 17 December 2022

Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell

Article Open access 14 October 2024

Data availability

All data analyzed in this study, including raw paleomagnetic measurements, thermomagnetic data, hysteresis data, and all datasets used to produce the figures and tables in the main manuscript and Supplementary Information, have been deposited in Figshare and are publicly available at79: https://doi.org/10.6084/m9.figshare.30851126.

References

  1. Louzada, K. L., Stewart, S. T., Weiss, B. P., Gattacceca, J. & Bezaeva, N. S. Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth Planet. Sci. Lett. 290, 90–101 (2010).

    Google Scholar 

  2. Louzada, K. L. et al. Impact demagnetization of the Martian crust: current knowledge and future directions. Earth Planet. Sci. Lett. 305, 257–269 (2011).

    Google Scholar 

  3. Lillis, R. J., Stewart, S. T. & Manga, M. Demagnetization by basin-forming impacts on early Mars: contributions from shock, heat, and excavation. J. Geophys. Res. Planets 118, 1045–1062 (2013).

    Google Scholar 

  4. Mittelholz, A., Johnson, C. L., Feinberg, J. M., Langlais, B. & Phillips, R. J. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6, 1–7 (2020).

    Google Scholar 

  5. Mittelholz, A. et al. Magnetic field signatures of craters on Mars. Geophys. Res. Lett. 51, 1–10 (2024).

    Google Scholar 

  6. Rochette, P. Crustal magnetization of Mars controlled by lithology or cooling rate in a reversing dynamo? Geophys. Res. Lett. 33, 2006–2009 (2006).

    Google Scholar 

  7. Steele, S. C. et al. Weak magnetism of Martian impact basins may reflect cooling in a reversing dynamo. Nat. Commun. 15, 6831 (2024).

    Google Scholar 

  8. Gattacceca, J. et al. Unraveling the simultaneous shock magnetization and demagnetization of rocks. Phys. Earth Planet. Inter. 182, 42–49 (2010).

    Google Scholar 

  9. Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118, 1488–1511 (2013).

    Google Scholar 

  10. Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. & Lillis, R. J. Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures. J. Geophys. Res. Planets 122, 2294–2311 (2017).

    Google Scholar 

  11. Arkani-Hamed, J. Timing of the Martian core dynamo. J. Geophys. Res. Planets 109, E03006 (2004).

    Google Scholar 

  12. Gilder, S. A., Pohl, J. & Eitel, M. Magnetic signatures of terrestrial meteorite impact craters: a summary. in Magnetic Fields in the Solar System (eds. Lühr, H., Wicht, J., Gilder, S. A. & Holschneider, M.) vol. 448 357–382 (Springer International Publishing, 2018).

  13. Mohit, P. S. & Arkani-Hamed, J. Impact demagnetization of the Martian crust. Icarus 168, 305–317 (2004).

    Google Scholar 

  14. Tiwari, S., Joshi, G., Phukon, P., Agarwal, A. & Venkateshwarlu, M. Emplacement of monomict breccia and crater size estimate at the Dhala impact structure, India. Meteorit. Planet. Sci. 60, 663–679 (2025).

    Google Scholar 

  15. Markandeyulu, A. et al. Application of high resolution airborne geophysical data in geological modelling of Mohar Cauldron Complex, Bundelkhand Massif, central India: implications for uranium exploration. Explor. Geophys. 45, 134–146 (2014).

    Google Scholar 

  16. Alva-Valdivia, L. M., Rodríguez-Trejo, A., Morales, J., González-Rangel, J. A. & Agarwal, A. Paleomagnetism and age constraints of historical lava flows from the El Jorullo volcano, Michoacán, Mexico. J. South Am. Earth Sci. 93, 439–448 (2019).

    Google Scholar 

  17. Lattard, D., Engelmann, R., Kontny, A. & Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res. 111, B12S28 (2006).

    Google Scholar 

  18. Direen, N. G., Pfeiffer, K. M. & Schmidt, P. W. Strong remanent magnetization in pyrrhotite: a structurally controlled example from the Paleoproterozoic Tanami orogenic gold province, northern Australia. Precambrian Res. 165, 96–106 (2008).

    Google Scholar 

  19. Tauxe, L. Paleomagnetic Principles and Practice. vol. 17 (Kluwer Academic Publishers, 2003).

  20. Alva-Valdivia, L. M. et al. Nature inspired synthesis of magnetite nanoparticle aggregates from natural berthierine. RSC Adv. 13, 32054–32062 (2023).

    Google Scholar 

  21. Alva-Valdivia, L. M., Guerrero-Díaz, P., Urrutia-Fucugauchi, J., Agarwal, A. & Caballero-Miranda, C. I. Review of magmatic iron-ore mineralization in central-western Mexico: rock-magnetism and magnetic anomaly modelling of Las Truchas, case study. J. South Am. Earth Sci. 97, 102409 (2020).

    Google Scholar 

  22. Alva-Valdivia, L. M. et al. Paleomagnetism and tectonics from the late Pliocene to late Pleistocene in the Xalapa monogenetic volcanic field, Veracruz, Mexico. GSA Bull 131, 1581–1590 (2019).

    Google Scholar 

  23. Fabian, K. Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth Planet. Sci. Lett. 213, 337–345 (2003).

    Google Scholar 

  24. Williams, W. et al. Vortex magnetic domain state behavior in the day plot. Geochem. Geophys. Geosyst. 25, e2024GC011462 (2024).

  25. Dearing, J. A. et al. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228–240 (1996).

    Google Scholar 

  26. Peters, C. & Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth Parts A/B/C 28, 659–667 (2003).

    Google Scholar 

  27. Muxworthy, A. R. Effect of grain interactions on the frequency dependence of magnetic susceptibility. Geophys. J. Int. 144, 441–447 (2001).

    Google Scholar 

  28. Worm, H. & Jackson, M. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res. Solid Earth 104, 25415–25425 (1999).

    Google Scholar 

  29. Clark, D. A. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J. Aust. Geol. Geophys. 17, 83–103 (1997).

    Google Scholar 

  30. Salminen, J., Pesonen, L. J., Reimold, W. U., Donadini, F. & Gibson, R. L. Paleomagnetic and rock magnetic study of the Vredefort impact structure and the Johannesburg Dome, Kaapvaal Craton, South Africa-Implications for the apparent polar wander path of the Kaapvaal Craton during the Mesoproterozoic. Precambrian Res. 168, 167–184 (2009).

    Google Scholar 

  31. Carporzen, L., Weiss, B. P., Gilder, S. A., Pommier, A. & Hart, R. J. Lightning remagnetization of the Vredefort impact crater: no evidence for impact-generated magnetic fields. J. Geophys. Res. Planets 117, 1–17 (2012).

    Google Scholar 

  32. Joshi, G., Phukon, P., Agarwal, A. & Ojha, A. K. On the emplacement of the impact melt at the Dhalā impact structure, India. J. Geophys. Res. Planets 128, e2023JE007840 (2023).

    Google Scholar 

  33. Agarwal, A. & Alva-Valdivia, L. M. Curie temperature of weakly shocked target basalts at the Lonar impact crater, India. Earth. Planets Sp 71, 141 (2019).

    Google Scholar 

  34. Agarwal, A., Kontny, A., Kenkmann, T. & Poelchau, M. H. Variation in magnetic fabrics at low shock pressure due to experimental impact cratering. J. Geophys. Res. Solid Earth 124, 9095–9108 (2019).

    Google Scholar 

  35. Reznik, B., Kontny, A., Fritz, J. & Gerhards, U. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties. Geochem. Geophys. Geosyst. 17, 2374–2393 (2016).

    Google Scholar 

  36. Reznik, B., Kontny, A. & Fritz, J. Effect of moderate shock waves on magnetic susceptibility and microstructure of a magnetite-bearing ore. Meteorit. Planet. Sci. 52, 1495–1504 (2017).

    Google Scholar 

  37. Pati et al. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization. Tectonophysics 649, 18–32 (2015).

    Google Scholar 

  38. Onorato, P. I. K., Uhlmann, D. R. & Simonds, C. H. The thermal history of the Manicouagan Impact Melt Sheet, Quebec. J. Geophys. Res. Solid Earth 83, 2789–2798 (1978).

    Google Scholar 

  39. Nagy, L. et al. Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales. Proc. Natl. Acad. Sci. USA. 114, 10356–10360 (2017).

    Google Scholar 

  40. Gattacceca, J. et al. Paleomagnetism and rock magnetism of east and west Clearwater Lake impact structures. Can. J. Earth Sci. 56, 983–993 (2019).

    Google Scholar 

  41. Behera, S. S., Tiwari, S., Pandey, A. K., Agarwal, A. & Ojha, A. K. The probable direction of impact at Dhala impact structure, India deciphered from microfracture intensity and X-ray diffractometry: a new potential impact direction indicator. Earth Planets 1–11 https://doi.org/10.1186/s40623-024-02028-1 (2024).

  42. Gattacceca, J., Lamali, A., Rochette, P., Boustie, M. & Berthe, L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter. 162, 85–98 (2007).

    Google Scholar 

  43. Gattacceca, J. et al. Investigating impact demagnetization through laser impacts and SQUID microscopy. Geology 34, 333–336 (2006).

    Google Scholar 

  44. Roberts, A. P. et al. Resolving the origin of pseudo-single domain magnetic behavior. J. Geophys. Res. Solid Earth 122, 9534–9558 (2017).

    Google Scholar 

  45. Bezaeva, N. S., Rochette, P., Gattacceca, J., Sadykov, R. A. & Trukhin, V. I. Pressure demagnetization of the Martian crust: ground truth from SNC meteorites. Geophys. Res. Lett. 34, 2–5 (2007).

    Google Scholar 

  46. Bezaeva, N. S., Gattacceca, J., Rochette, P., Sadykov, R. A. & Trukhin, V. I. Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa. Phys. Earth Planet. Inter. 179, 7–20 (2010).

    Google Scholar 

  47. Gilder, Goff, S. A., Le, M. & Chervin, J.-C. Static stress demagnetization of single and multidomain magnetite with implications for meteorite impacts. High Press. Res. 26, 539–547 (2006).

    Google Scholar 

  48. Jackson, M., Borradaile, G., Hudleston, P. & Banerjee, S. Experimental deformation of synthetic magnetite-bearing calcite sandstones: effects on remanence, bulk magnetic properties, and magnetic anisotropy. J. Geophys. Res. 98, 383–401 (1993).

    Google Scholar 

  49. Louzada, K. L., Stewart, S. T. & Weiss, B. P. Effect of shock on the magnetic properties of pyrrhotite, the Martian crust, and meteorites. Geophys. Res. Lett. 34, 1–5 (2007).

    Google Scholar 

  50. Tikoo, S. M. et al. Preservation and detectability of shock-induced magnetization. J. Geophys. Res. Planets 120, 1461–1475 (2015).

    Google Scholar 

  51. Nagata, T. & Carleton, B. J. Notes on piezo-remanent magnetization of igneous rocks. J. Geomagn. Geoelectr. 20, 115–127 (1968).

    Google Scholar 

  52. Nagata, T. Basic magnetic properties of rocks under the effects of mechanical stresses. Tectonophysics 9, 167–195 (1970).

    Google Scholar 

  53. Gilder, S. A., LeGoff, M., Chervin, J. C. & Peyronneau, J. Magnetic properties of single and multi-domain magnetite under pressures from 0 to 6 GPa. Geophys. Res. Lett. 31, 1–5 (2004).

    Google Scholar 

  54. Nagata, T. Main characteristics of piezo-magnetization and their qualitative interpretation. J. Geomagn. Geoelectr. 18, 81–97 (1966).

    Google Scholar 

  55. Pati, J. K. et al. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteorit. Planet. Sci. 52, 722–736 (2017).

    Google Scholar 

  56. Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers. (Cambridge University Press, 1997).

  57. Kuzina, D. M. et al. Paleomagnetic study of impactites from the Karla impact structure suggests protracted postimpact hydrothermalism. Meteorit. Planet. Sci. 57, 1846–1860 (2022).

    Google Scholar 

  58. Mendes, B., Kontny, A., Dudzisz, K. & Wilke, F. Ries magnetic mineralogy: exploring impact and post-impact evolution of crater magnetism. Meteorit. Planet. Sci. 59, 1577–1609 (2024).

    Google Scholar 

  59. O’Keefe, J. D. & Ahrens, T. J. Impact-induced melting of planetary surfaces. in Large Meteorite Impacts and Planetary Evolution (eds. Dressier, B. O., Grieve, R. A. F. & Sharpton, V. L.) 0 (Geological Society of America, https://doi.org/10.1130/SPE293-p103.1992).

  60. Plescia, J. B. & Cintala, M. J. Impact melt in small lunar highland craters. J. Geophys. Res. Planets 117, 1–12 (2012).

    Google Scholar 

  61. Kletetschka, G., Kavkova, R. & Ucar, H. Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe. New Mexico. Sci. Rep. 11, 1–13 (2021).

    Google Scholar 

  62. Narrett, I. S. et al. Impact plasma amplification of the ancient lunar dynamo. Sci. Adv. 11, 1–11 (2025).

    Google Scholar 

  63. Carporzen, L., Gilder, S. A. & Hart, R. J. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435, 198–201 (2005).

    Google Scholar 

  64. Dunlop, D. J. & Arkani-Hamed, J. Magnetic minerals in the Martian crust. J. Geophys. Res. Planets 110, 1–11 (2005).

    Google Scholar 

  65. Rochette, P. et al. Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteorit. Planet. Sci. 40, 529–540 (2005).

    Google Scholar 

  66. Pati, Reimold, W. U., Koeberl, C. & Pati, P. The Dhala structure, Bundelkhand craton, central india-eroded remnant of a large paleoproterozoic impact structure. Meteorit. Planet. Sci. 43, 1383–1398 (2008).

  67. Saha, L. et al. Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies. Geol. Mag. 153, 179–192 (2016).

    Google Scholar 

  68. Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G. & Mondal, M. E. A. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Res. 198–199, 51–76 (2012).

    Google Scholar 

  69. Deb, T. & Bhattacharyya, T. Earth-Science Reviews The evolution of the fracture systems under progressive sinistral shear in the Bundelkhand Craton, Central India: a review and new insights. Earth Sci. Rev 235, 104238 (2022).

    Google Scholar 

  70. Singh, A. K. et al. Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, north-central India. Earth Surf. Process. Landforms 46, 1482–1503 (2021).

    Google Scholar 

  71. Agarwal, A., Kumar, S., Joshi, G. & Agarwal, K. K. Evidence for shock provides insight into the formation of the central elevated area in the Dhala impact structure, India. Meteorit. Planet. Sci. 55, 2772–2779 (2020).

    Google Scholar 

  72. Petrovský, E. & Kapička, A. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res. Solid Earth 111, B12S27 (2006).

    Google Scholar 

  73. Paterson, G. A., Zhao, X., Jackson, M. & Heslop, D. Measuring, processing, and analyzing hysteresis data. Geochem. Geophys. Geosyst. 19, 1925–1945 (2018).

    Google Scholar 

  74. Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 107, EPM 4-1–EPM 4-22 (2002).

    Google Scholar 

  75. Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. Solid Earth 107, EPM 5-1–EPM 5-15 (2002).

    Google Scholar 

  76. Lurcock, P. C. & Wilson, G. S. PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochem. Geophys. Geosyst. 13, 1–6 (2012).

    Google Scholar 

  77. Fisher, R. A. Dispersion on a sphere. Proc. R. Soc. London. A. Math. Phys. Sci. 217, 295–305 (1953).

    Google Scholar 

  78. Clark, D. A. & Emerson, J. B. Notes on rock magnetization characteristics in applied geophysical studies. Explor. Geophys. 22, 547–555 (1991).

    Google Scholar 

  79. Pandey, A. K., Agarwal, A., Joshi, G., Sangode, S. J. & Venkateshwarlu, M. Data set of Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India. https://doi.org/10.6084/m9.figshare.30851126 (2025).

  80. Jain, S. C., Gaur, V. P., Srivastava, S. K., Nambiar, K. V. & Saxena, H. P. Recent find of a cauldron structure in Bundelkhand Craton. Geol. Surv. India Spec. Publ. 289, 297 (2001).

    Google Scholar 

  81. Day, R., Fuller, M. & Schmidt, V. A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267 (1977).

    Google Scholar 

Download references

Acknowledgements

The SERB/ES/2020301 (DST, India), IITK/ES/2019372 (IIT Kanpur, India), and STC/ES/2025349 supported this study. A.K.P. extends sincere gratitude to the Department of Science and Technology, New Delhi, Government of India, for their generous support in the form of an INSPIRE fellowship (IF190993). We thank the Department of Earth Sciences, Indian Institute of Technology Kanpur, for providing the optical microscopy and the working facilities. The authors acknowledge the open access funding provided by the One Nation One Subscription (ONOS) initiative of the Government of India.

Author information

Authors and Affiliations

  1. Shock Deformation Laboratory, Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, India

    Ambrish Kumar Pandey, Amar Agarwal & Gaurav Joshi

  2. Department of Geology, Savitribai Phule Pune University, Pune, India

    Satish Sangode

  3. CSIR-National Geophysical Research Institute, Hyderabad, India

    Mamilla Venkateshwarlu

Authors
  1. Ambrish Kumar Pandey
    View author publications

    Search author on:PubMed Google Scholar

  2. Amar Agarwal
    View author publications

    Search author on:PubMed Google Scholar

  3. Gaurav Joshi
    View author publications

    Search author on:PubMed Google Scholar

  4. Satish Sangode
    View author publications

    Search author on:PubMed Google Scholar

  5. Mamilla Venkateshwarlu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.K. Pandey: Conceptualization, fieldwork and sampling, sample analysis, data interpretation, writing original draft, review, and editing. A. Agarwal: Conceptualization, data interpretation, review and editing, funding acquisition. G. Joshi: Fieldwork and sampling, review and editing. S.J. Sangode: Sample analysis, review, and editing. M. Venkateshwarlu: Sample analysis, review, and editing.

Corresponding author

Correspondence to Ambrish Kumar Pandey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Banusha Kugabalan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Claire Nichols and Joe Aslin. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Agarwal, A., Joshi, G. et al. Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03164-6

Download citation

  • Received: 10 June 2025

  • Accepted: 23 December 2025

  • Published: 11 January 2026

  • DOI: https://doi.org/10.1038/s43247-025-03164-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing