Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Human activity may have influenced Holocene wildfire dynamics in boreal eastern Siberia
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Human activity may have influenced Holocene wildfire dynamics in boreal eastern Siberia

  • Ramesh Glückler  ORCID: orcid.org/0000-0003-1800-86011,2,3,
  • Elisabeth Dietze  ORCID: orcid.org/0000-0003-4817-84411,4,
  • Andrei A. Andreev1,
  • Stefan Kruse  ORCID: orcid.org/0000-0003-1107-19581,
  • Evgenii S. Zakharov5,
  • Izabella A. Baisheva1,2,5,
  • Amelie Stieg1,2,
  • Shiro Tsuyuzaki3,
  • Luidmila A. Pestryakova5 &
  • …
  • Ulrike Herzschuh  ORCID: orcid.org/0000-0003-0999-12611,2,6 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1454 Accesses

  • 1 Citations

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Boreal ecology
  • Fire ecology
  • Palaeoecology

Abstract

Severe wildfire seasons in the Republic of Sakha (Yakutia) raise questions regarding long-term fire dynamics and their drivers. However, data on long-term fire history remains scarce across eastern Siberia. Here we present a composite of reconstructed wildfire dynamics in Yakutia throughout the Holocene, based on eight newly contributed records of macroscopic charcoal in lake sediments in combination with published data. Increased biomass burning occurred in the Early Holocene, c. 10,000 years BP, before shifting to lower levels at c. 6000 years BP. Independent simulations of climate-driven burned area in an individual-based forest model reproduce this reconstructed Holocene trend, but the correlation on multi-centennial timescales turns negative in the Late Holocene. This mismatch suggests that climate alone cannot explain Late Holocene wildfire dynamics. We propose that a human dimension needs to be considered. By example of the settlement of the pastoralist Sakha people c. 800 years BP, we show that implementing reduced fuel availability from Indigenous land management in the forest model leads to increased multi-centennial-scale correlations. This study highlights the need for a better understanding of the poorly reported human dimension of past fire dynamics in eastern Siberia.

Similar content being viewed by others

Boreal forest cover was reduced in the mid-Holocene with warming and recurring wildfires

Article Open access 03 April 2024

Wildfire, ecosystem, and climate interactions in the Early Triassic

Article Open access 21 October 2025

Late Pleistocene emergence of an anthropogenic fire regime in Australia’s tropical savannahs

Article Open access 11 March 2024

Data availability

The charcoal and radiocarbon age data generated during the current study are available via PANGAEA under https://doi.org/10.1594/PANGAEA.974511 (127) and https://doi.org/10.1594/PANGAEA.974676 (128). LAVESI-FIRE simulation output data are available via Zenodo under https://doi.org/10.5281/zenodo.14626968 (129).

Code availability

The LAVESI-FIRE model code used during the current study is available via Zenodo under https://doi.org/10.5281/zenodo.17477084 (130).

References

  1. Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420–1425 (2024).

    Google Scholar 

  2. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Google Scholar 

  3. Kharuk, V. I. et al. Wildfires in the Siberian taiga. Ambio 50, 1953–1974 (2021).

    Google Scholar 

  4. Li, N. G. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth. Cryobiology 73, 221–225 (2016).

    Google Scholar 

  5. Li, Y., Janssen, T. A. J., Chen, R., He, B. & Veraverbeke, S. Trends and drivers of Arctic-boreal fire intensity between 2003 and 2022. Sci. Total Environ. 926, 172020 (2024).

    Google Scholar 

  6. Narita, D., Gavrilyeva, T. & Isaev, A. Impacts and management of forest fires in the Republic of Sakha, Russia: a local perspective for a global problem. Polar Sci 27, 100573 (2021).

    Google Scholar 

  7. Canosa, I. V. et al. Wildfire adaptation in the Russian Arctic: a systematic policy review. Clim. Risk Manag. 39, 100481 (2023).

    Google Scholar 

  8. Tomshin, O. & Solovyev, V. Features of the extreme fire season of 2021 in Yakutia (Eastern Siberia) and heavy air pollution caused by biomass burning. Remote Sens. 14, 4980 (2022).

    Google Scholar 

  9. Vinokurova, L., Solovyeva, V. & Filippova, V. When ice turns to water: forest fires and indigenous settlements in the republic of Sakha (Yakutia). Sustainability 14, 4759 (2022).

    Google Scholar 

  10. Burton, C. et al. Global burned area increasingly explained by climate change. Nat. Clim. Change 14, 1186–1192 (2024).

    Google Scholar 

  11. Furyaev, V. V., Vaganov, E. A., Tchebakova, N. M. & Valendik, E. N. Effects of fire and climate on successions and structural changes in the Siberian boreal forest. Eurasian J. For. Res. 2, 1–15 (2001).

    Google Scholar 

  12. Shestakova, T. A. et al. Tracking ecosystem stability across boreal Siberia. Ecol. Indic. 169, 112841 (2024).

    Google Scholar 

  13. Christianson, A. C. et al. Centering indigenous voices: the role of fire in the boreal forest of North America. Curr. For. Rep. 8, 257–276 (2022).

    Google Scholar 

  14. Mulverhill et al. Wildfires are spreading fast in Canada –we must strengthen forests for the future. Nature 633, 282–285 (2024).

    Google Scholar 

  15. Kimmerer, R. W. & Lake, F. K. The role of indigenous burning in land management. J. For. 99, 36–41 (2001).

    Google Scholar 

  16. Marlon, J. R. et al. Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences 13, 3225–3244 (2016).

    Google Scholar 

  17. Abaimov, A. P. Geographical distribution and genetics of siberian larch species. In Permafrost Ecosystems: Siberian Larch Forests 41–58 (Springer, 2010).

  18. Pupysheva, M. A. & Blyakharchuk, T. A. Fires and their significance in the Earth’s post-glacial period: a review of methods, achievements, groundwork. Contemp. Probl. Ecol. 16, 303–315 (2023).

    Google Scholar 

  19. Whitlock, C. & Larsen, C. Charcoal as a fire proxy. In Tracking Environmental Change Using Lake Sediments, Vol. 3: Terrestrial, Algal, and Siliceous Indicators, (eds. Smol, J. P. Birks, H. J. B. & Last W. M.) 75–97 (Springer, 2003).

  20. Katamura, F., Fukuda, M., Bosikov, N. P. & Desyatkin, R. V. Charcoal records from thermokarst deposits in central Yakutia, eastern Siberia: implications for forest fire history and thermokarst development. Quat. Res. 71, 36–40 (2009a).

    Google Scholar 

  21. Katamura, F., Fukuda, M., Bosikov, N. P. & Desyatkin, R. V. Forest fires and vegetation during the Holocene in central Yakutia, eastern Siberia. J. For. Res. 14, 30–36 (2009b).

    Google Scholar 

  22. Glückler, R. et al. Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies. Front. Ecol. Evol. 10, 962906 (2022).

    Google Scholar 

  23. Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Google Scholar 

  24. Sayedi, S. S. et al. Assessing changes in global fire regimes. Fire Ecol. 20, 18 (2024).

    Google Scholar 

  25. Stieg, A. et al. Hydroclimatic anomalies detected by a sub-decadal diatom oxygen isotope record of the last 220 years from Lake Khamra, Siberia. Clim. Past 20, 909–933 (2024).

    Google Scholar 

  26. Girardin, M. P. et al. Boreal forest cover was reduced in the mid-Holocene with warming and recurring wildfires. Commun. Earth Environ. 5, 1–12 (2024).

    Google Scholar 

  27. Bird, M. I. et al. Late Pleistocene emergence of an anthropogenic fire regime in Australia’s tropical savannahs. Nat. Geosci. 17, 233–240 (2024).

    Google Scholar 

  28. Kuzmin, Y. V., Bykov, N. I., & Krupochkin, E. P. Humans and nature in Siberia: from the Palaeolithic to the Middle Ages. In Humans in the Siberian Landscapes: Ethnocultural Dynamics and Interaction with Nature and Space, (eds. Bocharnikov, V. N. & Steblyanskaya A. N.) 59–87 (Springer International Publishing, 2022).

  29. Pitulko, V. V. et al. Early human presence in the Arctic: evidence from 45,000-year-old mammoth remains. Science 351, 260–263 (2016).

    Google Scholar 

  30. Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).

    Google Scholar 

  31. Kuzmin, Y. V. Reconstructing human−environmental relationship in the Siberian Arctic and sub-arctic: a Holocene overview. Radiocarbon 65, 431–442 (2023).

    Google Scholar 

  32. Fedorova, S. A. et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol. Biol. 13, 127 (2013).

    Google Scholar 

  33. Okladnikov, A. P. Yakutia Before its Incorporation into the Russian State. In Anthropology of the North: Translations from Russian Sources (ed. Michael H. N.) (McGill-Queen’s University Press, 1970).

  34. Crate, S. A. Once Upon the Permafrost: Knowing Culture and Climate Change in Siberia (Tucson: University of Arizona Press, 2022).

  35. Glückler, R. et al. Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record. Biogeosciences 18, 4185–4209 (2021).

    Google Scholar 

  36. Power, M. J. et al. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 30, 887–907 (2008).

    Google Scholar 

  37. Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).

    Google Scholar 

  38. Dallmeyer, A. et al. The deglacial forest conundrum. Nat. Commun. 13, 6035 (2022).

    Google Scholar 

  39. Herzschuh, U. et al. Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends. Clim. Past 19, 1481–1506 (2023).

    Google Scholar 

  40. Sato, H., Kobayashi, H. & Delbart, N. Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM. For. Ecol. Manag. 259, 301–311 (2010).

    Google Scholar 

  41. Shuman et al. Fire disturbance and climate change: implications for Russian forests. Environ. Res. Lett. 12, 035003 (2017).

    Google Scholar 

  42. Glückler, R., Gloy, J., Dietze, E., Herzschuh, U. & Kruse, S. Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum. Fire Ecol. 20, https://doi.org/10.1186/s42408-023-00238-8 (2024).

  43. Power, M. J., Marlon, J. R., Bartlein, P. J. & Harrison, S. P. Fire history and the Global Charcoal Database: a new tool for hypothesis testing and data exploration. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 52–59 (2010).

    Google Scholar 

  44. Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. USA 110, 13055–13060 (2013).

    Google Scholar 

  45. Kirillina, K., Shvetsov, E. G., Protopopova, V. V., Thiesmeyer, L. & Yan, W. Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environ. Res. Lett. 15, 035009 (2020).

    Google Scholar 

  46. Barhoumi, C. et al. Holocene fire regime changes in the southern Lake Baikal region influenced by climate-vegetation-anthropogenic activity interactions. Forests 12, 978 (2021).

    Google Scholar 

  47. Krikunova, A. I. et al. Vegetation and fire history of the Lake Baikal Region since 32 ka BP reconstructed through microcharcoal and pollen analysis of lake sediment from Cis- and Trans-Baikal. Quat. Sci. Rev. 340, 108867 (2024).

    Google Scholar 

  48. Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, https://doi.org/10.1038/ngeo313 (2008).

  49. Wirth, C. Fire regime and tree diversity in boreal forests: implications for the carbon cycle. In Forest Diversity and Function: Temperate and Boreal Systems (eds. Scherer-Lorenzen, M. Körner, C. & Schulze E.-D.) (Springer, 2005), 309–344.

  50. De Groot, W. J. et al. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 294, 23–34 (2013).

    Google Scholar 

  51. Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, https://doi.org/10.1038/ngeo2352 (2015).

  52. Ziegler, E. et al. Patterns of changing surface climate variability from the Last Glacial Maximum to present in transient model simulations. Clim. Past 21, 627–659 (2025).

    Google Scholar 

  53. Marlon, J. R. et al. Wildfire responses to abrupt climate change in North America. Proc. Natl. Acad. Sci. USA 106, 2519–2524 (2009).

    Google Scholar 

  54. Tarasov, P. et al. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 440–457 (2007).

    Google Scholar 

  55. Bezrukova, E. V., Belov, A. V. & Orlova, L. A. Holocene vegetation and climate variability in North Pre-Baikal region, East Siberia, Russia. Quat. Int. 237, 74–82 (2011).

    Google Scholar 

  56. Baumer, M. M. et al. Climatic and environmental changes in the Yana Highlands of north-eastern Siberia over the last c. 57000 years, derived from a sediment core from Lake Emanda. Boreas 50, 114–133 (2021).

    Google Scholar 

  57. Hughes-Allen, L. et al. 14,000-year carbon accumulation dynamics in a Siberian lake reveal catchment and lake productivity changes. Front. Earth Sci. 9, 710257 (2021).

    Google Scholar 

  58. Meister, P. et al. A global compilation of diatom silica oxygen isotope records from lake sediment–trends and implications for climate reconstruction. Clim. Past 20, 363–392 (2024).

    Google Scholar 

  59. Popp, S. et al. Palaeoclimate signals as inferred from stable-isotope composition of ground ice in the Verkhoyansk foreland, Central Yakutia. Permafr. Periglac. Process. 17, 119–132 (2006).

    Google Scholar 

  60. Thomas, E. R. et al. The 8.2ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007).

    Google Scholar 

  61. Parker, S. E. & Harrison, S. P. The timing, duration and magnitude of the 8.2 ka event in global speleothem records. Sci. Rep. 12, 10542 (2022).

    Google Scholar 

  62. Ulrich, M. et al. Rapid thermokarst evolution during the mid-Holocene in Central Yakutia, Russia. Holocene 27, 1899–1913 (2017).

    Google Scholar 

  63. Harding, P. et al. Hydrological (in)stability in Southern Siberia during the Younger Dryas and early Holocene. Glob. Planet. Change 195, 103333 (2020).

    Google Scholar 

  64. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    Google Scholar 

  65. Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 79, 201–219 (2009).

    Google Scholar 

  66. Velichko, A. A., Andreev, A. A. & Klimanov, V. A. Climate and vegetation dynamics in the tundra and forest zone during the Late Glacial and Holocene. Quat. Int. 71–96 https://doi.org/10.1016/S1040-6182(96)00039-0 (1997).

  67. Müller, S., Tarasov, P. E., Andreev, A. A. & Diekmann, B. Late Glacial to Holocene environments in the present-day coldest region of the Northern Hemisphere inferred from a pollen record of Lake Billyakh, Verkhoyansk Mts, NE Siberia. Clim. Past 5, 73–84 (2009).

    Google Scholar 

  68. Andreev, A. A. et al. Late Quaternary paleoenvironmental reconstructions from sediments of Lake Emanda (Verkhoyansk Mountains, East Siberia). J. Quat. Sci. 37, 884–899 (2022).

    Google Scholar 

  69. Baisheva, I. et al. Late Glacial and Holocene vegetation and lake changes in SW Yakutia, Siberia, inferred from sedaDNA, pollen, and XRF data. Front. Earth Sci. 12, 1354284 (2024).

    Google Scholar 

  70. Schulte, L. et al. Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Commun. Biol. 5, 1–11 (2022).

    Google Scholar 

  71. Abaimov, A. P. & Sofronov, M. A. The main trends of post-fire succession in near-tundra forests of central Siberia. In Fire in Ecosystems of Boreal Eurasia. Forestry Sciences (eds. Goldammer, J. G. & Furyaev V. V.) 372–386 (Kluwer Academic Publishers, 1996).

  72. Andreev, A. A. & Tarasov, P. E. Northern Asia, in The Encyclopedia of Quaternary Science (ed. Elias, S. A.) 164–172 (Elsevier, 2013).

  73. Coughlan, M. R., Magi, B. I. & Derr, K. M. A global analysis of hunter-gatherers, broadcast fire use, and lightning-fire-prone landscapes. Fire 1, 41 (2018).

    Google Scholar 

  74. Roos, C. I., Williamson, G. J. & Bowman, D. M. J. S. Is anthropogenic pyrodiversity invisible in paleofire records? Fire 2, 42 (2019).

    Google Scholar 

  75. Ryabogina, N. E., Nesterova, M. I., Utaygulova, R. R. & Trubitsyna, E. D. Forest fires in southwest Western Siberia: the impact of climate and economic transitions over 9000 years. J. Quat. Sci. 39, 432–442 (2024).

    Google Scholar 

  76. Nomokonova, T., Losey, R. J., Weber, A., Goriunova, O. I. & Novikov, A. G. Late Holocene subsistence practices among cis-baikal pastoralists, Siberia: zooarchaeological insights from Sagan-Zaba II. Asian Perspect 49, 157–179 (2010).

    Google Scholar 

  77. Dietze, E. et al. Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quat. Sci. Rev. 201, 44–56 (2018).

    Google Scholar 

  78. Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl. Acad. Sci. USA 115, 8143–8148 (2018).

    Google Scholar 

  79. Rouet-Leduc, J. et al. Effects of large herbivores on fire regimes and wildfire mitigation. J. Appl. Ecol. 58, 2690–2702 (2021).

    Google Scholar 

  80. Roos, C. I. et al. Native American fire management at an ancient wildland–urban interface in the Southwest United States. Proc. Natl. Acad. Sci. USA 118, e2018733118 (2021).

    Google Scholar 

  81. Roos, C. I. et al. Indigenous fire management and cross-scale fire-climate relationships in the Southwest United States from 1500 to 1900 CE. Sci. Adv. 8, eabq3221 (2022).

    Google Scholar 

  82. Yu, Y. et al. Climatic factors and human population changes in Eurasia between the Last Glacial Maximum and the early Holocene. Global Planet. Change 221, 104054 (2023).

    Google Scholar 

  83. Zlojutro, M. et al. Coalescent simulations of Yakut mtDNA variation suggest small founding population. Am. J. Phys. Anthropol. 139, 474–482 (2009).

    Google Scholar 

  84. Keyser, C. et al. The ancient Yakuts: a population genetic enigma. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130385 (2015).

    Google Scholar 

  85. Dolgikh, B. O. Tribal Composition of Siberian Peoples (Academy of Sciences, 1960).

  86. Pakendorf, B. et al. Investigating the effects of prehistoric migrations in Siberia: genetic variation and the origins of Yakuts. Hum. Genet. 120, 334–53 (2006).

    Google Scholar 

  87. Soloviev, P. A. The Cryolithozone of the Northern Part of the Lena-Amga Interfluve (Moscow: Academy of Sciences, 1959).

  88. Crate, S. et al. Permafrost livelihoods: a transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).

    Google Scholar 

  89. Baisheva, I. et al. Permafrost-thaw lake development in Central Yakutia: sedimentary ancient DNA and element analyses from a Holocene sediment record. J. Paleolimnol. 70, 95–112 (2023).

    Google Scholar 

  90. Naumov, A., Akimova, V., Sidorova, D. & Topnikov, M. Agriculture and land use in the North of Russia: case study of Karelia and Yakutia. Open Geosci 12, 1497–1511 (2020).

    Google Scholar 

  91. Solovyeva, V., Vinokurova, L. & Filippova, V. Fire and water: indigenous ecological knowledge and climate challenges in the republic of Sakha (Yakutia). Anthropol. Archeol. Eurasia 59, 242–266 (2022).

    Google Scholar 

  92. Achard, F., Eva, H. D., Mollicone, D. & Beuchle, R. The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2329–2337 (2007).

    Google Scholar 

  93. Shvetsov, E. G., Kukavskaya, E. A., Shestakova, T. A., Laflamme, J. & Rogers, B. M. Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region. Environ. Res. Lett. 16, 115007 (2021).

    Google Scholar 

  94. Pyne, S. J. Wild hearth a prolegomenon to the cultural fire history of Northern Eurasia. In Fire in Ecosystems of Boreal Eurasia (eds Goldammer, J. G. & Furyaev, V. V.) 21–44 (Springer Netherlands, 1996).

  95. Takakura, H. et al. Permafrost and Culture: Global Warming and the Republic of Sakha (Yakutia), Russian Federation (in English). Center for Northeast Asian Studies Report 26. (2021).

  96. Fedorov, A. N. et al. Permafrost-landscape map of the republic of sakha (Yakutia) on a Scale 1:1,500,000. Geosciences 8, 465 (2018).

    Google Scholar 

  97. Köster, K. et al. Impacts of wildfire on soil microbiome in Boreal environments. Curr. Opin. Environ. Sci. Health 22, 100258 (2021).

    Google Scholar 

  98. Glückler, R. et al. Setting up a baseline for the Yakutian-Chukotkan Monitoring transect: lake inventories including water chemistry, lake sediment coring and UAV-surveys. In Reports on Polar and Marine Research: Russian-German Expeditions to Siberia in 2021 (eds. Morgenstern, A. et al.) (Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, 2023).

  99. Mollenhauer, G., Grotheer, H., Gentz, T., Bonk, E. & Hefter, J. Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI), Germany. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 496, 45–51 (2021).

    Google Scholar 

  100. Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Google Scholar 

  101. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6, 457–474 (2011).

    Google Scholar 

  102. R Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  103. Walker, M. J. C. et al. Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J. Quat. Sci. 27, 649–659 (2012).

    Google Scholar 

  104. Hawthorne, D. et al. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3–17 (2018).

    Google Scholar 

  105. Enache, M. D. & Cumming, B. F. Charcoal morphotypes in lake sediments from British Columbia (Canada): an assessment of their utility for the reconstruction of past fire and precipitation. J. Paleolimnol. 38, 347–363 (2007).

    Google Scholar 

  106. Blarquez, O. et al. paleofire: an R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Comput. Geosci. 72, 255–261 (2014).

    Google Scholar 

  107. Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob. Ecol. Biogeogr. 27, 199–212 (2018).

    Google Scholar 

  108. Hennebelle, A. et al. The reconstruction of burned area and fire severity using charcoal from boreal lake sediments. Holocene 30, 1400–1409 (2020).

    Google Scholar 

  109. Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 26, 211–252 (1964).

    Google Scholar 

  110. Daniau, A.-L. et al. Predictability of biomass burning in response to climate changes. Glob. Biogeochem. Cycles 26, GB4007 (2012).

    Google Scholar 

  111. Kruse, S., Wieczorek, M., Jeltsch, F. & Herzschuh, U. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecol. Model. 338, 101–121 (2016).

    Google Scholar 

  112. Kruse, S., Gerdes, A., Kath, N. J. & Herzschuh, U. Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0. Geosci. Model Dev. 11, 4451–4467 (2018).

    Google Scholar 

  113. Kruse, S. et al. Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia. Geosci. Model Dev. 15, 2395–2422 (2022).

    Google Scholar 

  114. Grimm, V. & Railsback, S. F. Individual-based modeling and ecology. https://doi.org/10.1515/9781400850624 (Princeton University Press, 2005).

  115. Rizzoli, P. et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 132, 119–139 (2017).

    Google Scholar 

  116. Kapsch, M.-L., Mikolajewicz, U., Ziemen, F. A., Rodehacke, C. B. & Schannwell, C. Analysis of the surface mass balance for deglacial climate simulations. Cryosphere 15, 1131–1156 (2021).

    Google Scholar 

  117. Kapsch, M.-L., Mikolajewicz, U., Ziemen, F. & Schannwell, C. Ocean response in transient simulations of the last deglaciation dominated by underlying ice-sheet reconstruction and method of meltwater distribution. Geophys. Res. Lett. 49, e2021GL096767 (2022).

    Google Scholar 

  118. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Google Scholar 

  119. Ivanovic, R. F. et al. Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 core experiment design and boundary conditions. Geosci. Model Dev. 9, 2563–2587 (2016).

    Google Scholar 

  120. Li, C. et al. Global biome changes over the last 21,000 years inferred from model–data comparisons. Clim. Past 21, 1001–1024 (2025).

    Google Scholar 

  121. Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).

    Google Scholar 

  122. Reschke, M., Kunz, T. & Laepple, T. Comparing methods for analysing time scale dependent correlations in irregularly sampled time series data. Comput. Geosci. 123, 65–72 (2019).

    Google Scholar 

  123. Polanco-Martínez, J. M. RolWinMulCor: an R package for estimating rolling window multiple correlation in ecological time series. Ecol. Inform. 60, 101163 (2020).

    Google Scholar 

  124. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  125. Polanco-Martínez, J. M. Dynamic relationship analysis between NAFTA stock markets using nonlinear, nonparametric, non-stationary methods. Nonlinear Dyn 97, 369–389 (2019).

    Google Scholar 

  126. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    Google Scholar 

  127. Glückler, R. & Herzschuh, U. Macroscopic charcoal records from eight sediment cores in central and eastern Yakutia, Siberia. PANGAEA. https://doi.org/10.1594/PANGAEA.974511 (2025a).

  128. Glückler, R. & Herzschuh, U. Radiocarbon ages of eight sediment cores in central and eastern Yakutia, Siberia. PANGAEA. https://doi.org/10.1594/PANGAEA.974676 (2025b).

  129. Glückler, R. & Kruse, S. LAVESI-FIRE simulation output near Maya, Central Yakutia, Siberia (v1.0). Zenodo. https://doi.org/10.5281/zenodo.14626969 (2025).

  130. Stefan Kruse, Glückler, R. & Gloy, J. StefanKruse/LAVESI: LAVESI-FIRE v1.1 (FIRE_v1.1). Zenodo. https://doi.org/10.5281/zenodo.17477084 (2025).

Download references

Acknowledgements

R.G. was funded by AWI INSPIRES (International Science Program for Integrative Research) and JSPS (Japan Society for the Promotion of Science) as an International Research Fellow. L.P., E.Z., and I.B. were supported by the framework of science project FSRG-2023-0027. Research was supported by funding from the Gottfried Wilhelm Leibniz Prize (DFG; German Research Foundation) to U.H. We thank the team of the German-Russian “Yakutia 2021” expedition. W. Finsinger kindly provided support with R. Thanks to P. Uchanov for help in the laboratory and to everyone supporting sediment core subsampling: J. Courtin, V. Döpper, A. Eichner, L. Enguehard, L. Grimm, S. Haupt, P. Hauter, A. Korup, H.S. Malik, P. Meister, C. Messner, R. Paasch, A. Prasannakumar, K. Schildt, E. Topp-Johnson, and J. Wagner. We acknowledge support by the Open Access Publication Funds of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

    Ramesh Glückler, Elisabeth Dietze, Andrei A. Andreev, Stefan Kruse, Izabella A. Baisheva, Amelie Stieg & Ulrike Herzschuh

  2. Institute for Environmental Science and Geography, University of Potsdam, Potsdam, Germany

    Ramesh Glückler, Izabella A. Baisheva, Amelie Stieg & Ulrike Herzschuh

  3. Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan

    Ramesh Glückler & Shiro Tsuyuzaki

  4. Institute of Geography, Georg August University of Göttingen, Göttingen, Germany

    Elisabeth Dietze

  5. Institute of Natural Sciences, North-Eastern Federal University of Yakutsk, Yakutsk, Russia

    Evgenii S. Zakharov, Izabella A. Baisheva & Luidmila A. Pestryakova

  6. Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany

    Ulrike Herzschuh

Authors
  1. Ramesh Glückler
    View author publications

    Search author on:PubMed Google Scholar

  2. Elisabeth Dietze
    View author publications

    Search author on:PubMed Google Scholar

  3. Andrei A. Andreev
    View author publications

    Search author on:PubMed Google Scholar

  4. Stefan Kruse
    View author publications

    Search author on:PubMed Google Scholar

  5. Evgenii S. Zakharov
    View author publications

    Search author on:PubMed Google Scholar

  6. Izabella A. Baisheva
    View author publications

    Search author on:PubMed Google Scholar

  7. Amelie Stieg
    View author publications

    Search author on:PubMed Google Scholar

  8. Shiro Tsuyuzaki
    View author publications

    Search author on:PubMed Google Scholar

  9. Luidmila A. Pestryakova
    View author publications

    Search author on:PubMed Google Scholar

  10. Ulrike Herzschuh
    View author publications

    Search author on:PubMed Google Scholar

Contributions

U.H., S.K., and L.P. designed and led the fieldwork, supported by R.G. R.G., U.H., E.Z., I.B., and A.S. conducted fieldwork at the lake sites. R.G. designed the charcoal analysis study, supervised by U.H. and E.D. R.G. subsampled the sediment cores. R.G. prepared the age dating process and created the chronologies. R.G. conducted the charcoal-related laboratory work and data analysis, supported by S.T. and E.D. R.G. wrote the initial version of the manuscript, supervised by U.H and supported by A.A. All authors reviewed the initial manuscript.

Corresponding author

Correspondence to Ulrike Herzschuh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth & Environment thanks Philip Higuera and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Jiaoyang Ruan and Martina Grecequet. A peer review file is available

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glückler, R., Dietze, E., Andreev, A.A. et al. Human activity may have influenced Holocene wildfire dynamics in boreal eastern Siberia. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03169-1

Download citation

  • Received: 21 March 2025

  • Accepted: 23 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s43247-025-03169-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing