Abstract
Regional climate variability manifests through distinct atmospheric regimes influencing weather, climate, and predictability. Yet, their response to global warming remains unresolved. Using a hundred realisations from the Community Earth System Model Large Ensemble, we examine shifts in wintertime North Atlantic atmospheric regimes and the North Atlantic Oscillation before and after 1995, highlighting the detectable influence of anthropogenic warming on atmospheric circulation. The large-ensemble framework isolates internal variability by removing the ensemble mean. Under anthropogenic warming, the number of regime states associated with the forced response remains constant, although their spatial circulation patterns undergo substantial reorganisation. In contrast, internal variability alone exhibits a reduction in the number of regime states. Future projections indicate a shift toward more frequent positive phases of the North Atlantic Oscillation, accompanied by low-amplitude negative phases late in the century, alongside a marked decline in its variability and altered mid-tropospheric westerlies.
Similar content being viewed by others
Data availability
The CESM2-LE model output is available from: (https://www.cesm.ucar.edu/community-projects/lens2/data-sets). The observed Hurrell NAO PC-based index for model validation can be retrieved from: (https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based).
Code availability
The codes used to produce the results in this study are publicly available through the Zenodo repository: (https://doi.org/10.5281/zenodo.18030386)91.
References
Palmer, T. N. A nonlinear dynamical perspective on climate prediction. J. Clim. 12, 575–591 (1999).
Meehl, G. A. et al. Decadal prediction: can it be skillful?. Bull. Am. Meteor. Soc. 90, 1467–1486 (2009).
Franzke, C. L. E. et al. The structure of climate variability across scales. Rev. Geophys. 58, e2019RG000657 (2020).
Deser, C. Certain uncertainty: the role of internal climate variability in projections of regional climate change and risk management. Earth’s. Fut. 8, e2020EF001854 (2020).
Deser, C., Phillips, A. S., Alexander, M. A. & Smoliak, B. V. Projecting North American Climate over the Next 50 Years: uncertainty due to internal variability*. J. Clim. 27, 2271–2296 (2014).
Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).
Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).
Osborn, T. J. Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim. Dyn. 22, 605–623 (2004).
Gillett, N. P., Graf, H. F. & Osborn, T. J. Climate change and the North Atlantic Oscillation. in Geophysical Monograph Series (eds Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M.) 134, 193–209 (American Geophysical Union, 2003).
Stenseth, N. C. et al. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc. R. Soc. Lond. B 270, 2087–2096 (2003).
Wang, G. & Schimel, D. Climate change, climate modes, and climate impacts. Annu. Rev. Environ. Resour. 28, 1–28 (2003).
Duteil, O. & Park, W. Future changes in atmospheric synoptic variability slow down ocean circulation and decrease primary productivity in the tropical Pacific Ocean. npj Clim. Atmos. Sci. 6, 136 (2023).
Shrestha, S. & Soden, B. J. Anthropogenic weakening of the atmospheric circulation during the satellite Era. Geophys. Res. Lett. 50, e2023GL104784 (2023).
Rezaei, A., Karami, K., Tilmes, S. & Moore, J. C. Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios. Atmos. Chem. Phys. 23, 5835–5850 (2023).
Lee, J.-Y. et al. Future Change of Northern Hemisphere Summer Tropical–Extratropical Teleconnection in CMIP5 Models*. J. Clim. 27, 3643–3664 (2014).
Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q. & Wang, H. Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27, 9050–9064 (2014).
Gu, Q. et al. Wide range of possible trajectories of North Atlantic climate in a warming world. Nat. Commun. 15, 4221 (2024).
Gervais, M., Shaman, J. & Kushnir, Y. Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Clim. 31, 5927–5946 (2018).
Gervais, M., Shaman, J. & Kushnir, Y. Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic Jet. J. Clim. 32, 2673–2689 (2019).
Deser, C. & Blackmon, M. L. Surface climate variations over the North Atlantic Ocean during Winter: 1900–1989. J. Clim. 6, 1743–1753 (1993).
Marshall, J. et al. North Atlantic climate variability: phenomena, impacts and mechanisms. Int. J. Climatol. 21, 1863–1898 (2001).
Sutton, R. T. & Hodson, D. L. R. Influence of the Ocean on North Atlantic Climate Variability 1871–1999. J. Clim. 16, 3296–3313 (2003).
Hurrell, J. W. et al. Atlantic climate variability and predictability: a CLIVAR perspective. J. Clim. 19, 5100–5121 (2006).
Kim, W. M., Yeager, S., Chang, P. & Danabasoglu, G. Low-frequency North Atlantic climate variability in the community earth system model large ensemble. J. Clim. 31, 787–813 (2018).
Michelangeli, P.-A., Vautard, R. & Legras, B. Weather regimes: recurrence and quasi stationarity. J. Atmos. Sci. 52, 1237–1256 (1995).
Kimoto, M. & Ghil, M. Multiple flow regimes in the Northern Hemisphere winter. part i: methodology and hemispheric regimes. J. Atmos. Sci. 50, 2625–2644 (1993).
Mo, K. & Ghil, M. Cluster analysis of multiple planetary flow regimes. J. Geophys. Res. 93, 10927–10952 (1988).
Smyth, P., Ide, K. & Ghil, M. Multiple regimes in northern hemisphere height fields via mixturemodel clustering*. J. Atmos. Sci. 56, 3704–3723 (1999).
Cassou, C., Terray, L., Hurrell, J. W. & Deser, C. North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J. Clim. 17, 1055–1068 (2004).
Chidean, M. I., Muñoz-Bulnes, J., Ramiro-Bargueño, J., Caamaño, A. J. & Salcedo-Sanz, S. Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering. Glob. Planet. Change 129, 45–55 (2015).
Chidean, M. I., Caamaño, A. J., Casanova-Mateo, C., Ramiro-Bargueño, J. & Salcedo-Sanz, S. Spatio-temporal climate regionalization using a self-organized clustering approach. Theor. Appl. Climatol. 140, 927–949 (2020).
Straus, D. M. Clustering techniques in climate analysis. in Oxford Research Encyclopedia of Climate Science (Oxford University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.711.
Palmer, T. N. A nonlinear dynamical perspective on climate change. Weather 48, 314–326 (1993).
Corti, S., Molteni, F. & Palmer, T. N. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).
Stephenson, D. B., Hannachi, A. & O’Neill, A. On the existence of multiple climate regimes. Quart. J. R. Meteor. Soc. 130, 583–605 (2004).
Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dynam. 12, 1393–1411 (2021).
Maher, N. et al. The Max Planck Institute grand ensemble: enabling the exploration of climate system variability. J. Adv. Model Earth Syst. 11, 2050–2069 (2019).
Delworth, T. L. et al. SPEAR: the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model Earth Syst. 12, e2019MS001895 (2020).
Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic Sea ice extent. J. Clim. 30, 553–571 (2017).
Hannachi, A., Straus, D. M., Franzke, C. L. E., Corti, S. & Woollings, T. Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Rev. Geophys. 55, 199–234 (2017).
Visbeck, M. H., Hurrell, J. W., Polvani, L. & Cullen, H. M. The North Atlantic Oscillation: past, present, and future. Proc. Natl. Acad. Sci. USA 98, 12876–12877 (2001).
Hurrell, J. W. & Deser, C. North Atlantic climate variability: the role of the North Atlantic Oscillation. J. Mar. Syst. 78, 28–41 (2009).
Franzke, C., Lee, S. & Feldstein, S. B. Is the North Atlantic Oscillation a Breaking Wave?. J. Atmos. Sci. 61, 145–160 (2004).
Quinn, C., Harries, D. & O’Kane, T. J. Dynamical analysis of a reduced model for the North Atlantic Oscillation. J. Atmos. Sci. https://doi.org/10.1175/JAS-D-20-0282.1 (2021).
Outten, S. & Davy, R. Changes in the North Atlantic Oscillation over the 20th century. Weather Clim. Dynam. 5, 753–762 (2024).
Santolaria-Otín, M. & García-Serrano, J. Internal variability of the winter North Atlantic Oscillation longitudinal displacements. npj Clim. Atmos. Sci. 7, 291 (2024).
Omrani, N.-E. et al. Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. npj Clim. Atmos. Sci. 5, 59 (2022).
Bellucci, A., Gualdi, S., Scoccimarro, E. & Navarra, A. NAO–ocean circulation interactions in a coupled general circulation model. Clim. Dyn. 31, 759–777 (2008).
Okonkwo, C. An advanced review of the relationships between Sahel precipitation and climate indices: a wavelet approach. Int. J. Atmos. Sci. 2014, 1–11 (2014).
Delworth, T. L. & Zeng, F. The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Clim. 29, 941–962 (2016).
Intergovernmental Panel On Climate Change (Ipcc). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2023). https://doi.org/10.1017/9781009157896.
Lehner, F., Deser, C. & Terray, L. Toward a new estimate of “time of emergence” of anthropogenic warming: insights from dynamical adjustment and a large initial-condition model ensemble. J. Clim. 30, 7739–7756 (2017).
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Chang. 10, 277–286 (2020).
Rousi, E., Selten, F., Rahmstorf, S. & Coumou, D. Changes in North Atlantic Atmospheric circulation in a warmer climate favor winter flooding and summer drought over Europe. J. Clim. 34, 2277–2295 (2021).
Fabiano, F., Meccia, V. L., Davini, P., Ghinassi, P. & Corti, S. A regime view of future atmospheric circulation changes in northern mid-latitudes. Weather Clim. Dynam. 2, 163–180 (2021).
Mitevski, I., Lee, S. H., Vecchi, G., Orbe, C. & Polvani, L. M. More positive and less variable North Atlantic Oscillation at high CO2 forcing. npj Clim. Atmos. Sci. 8, 171 (2025).
Everitt, B. S. & Hand, D. J. Finite Mixture Distributions. https://doi.org/10.1007/978-94-009-5897-5 (Springer Netherlands, Dordrecht, 1981).
Risbey, J. S., O’Kane, T. J., Monselesan, D. P., Franzke, C. & Horenko, I. Metastability of Northern Hemisphere teleconnection modes. J. Atmos. Sci. 72, 35–54 (2015).
Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 6, 461–464 (1978).
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Straus, D. M., Corti, S. & Molteni, F. Circulation regimes: chaotic variability versus SST-forced predictability. J. Clim. 20, 2251–2272 (2007).
Cassou, C. & Terray, L. Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett. 28, 3195–3198 (2001).
Shaw, T. A. Mechanisms of future predicted changes in the Zonal mean mid-latitude circulation. Curr. Clim. Change Rep. 5, 345–357 (2019).
Yu, H. et al. Seasonal phase change of the North Atlantic Tripole Sea surface temperature predicted by air-sea coupling. npj Clim. Atmos. Sci. 7, 322 (2024).
Tao, L. et al. Role of North Atlantic Tripole SST in Mid-Winter Reversal of NAO. Geophys. Res. Lett. 50, e2023GL103502 (2023).
Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon. Wea. Rev. 109, 784–812 (1981).
Hurrell, J. W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 269, 676–679 (1995).
Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).
Kim, M., Yoo, C. & Kim, H. Process evaluation of subseasonal North Atlantic Oscillation Prediction in the ECMWF ensemble forecast system. Geophys. Res. Lett. 51, e2024GL111291 (2024).
Schneider, D. P., Deser, C., Fasullo, J. & Trenberth, K. E. Climate Data Guide Spurs Discovery and Understanding. EoS Trans. 94, 121–122 (2013).
Hamouda, M. E., Pasquero, C. & Tziperman, E. Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate. Nat. Clim. Chang. 11, 137–142 (2021).
Manola, I., Haarsma, R. J. & Hazeleger, W. Drivers of North Atlantic Oscillation Events. Tellus A: Dyn. Meteorol. Oceanogr. 65, 19741 (2013).
Hu, H.-M. et al. Tracking westerly wind directions over Europe since the middle Holocene. Nat. Commun. 13, 7866 (2022).
Wu, Y., Ting, M., Seager, R., Huang, H.-P. & Cane, M. A. Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Clim. Dyn. 37, 53–72 (2011).
Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. 117, 2012JD018578 (2012).
Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, 2005GL023684 (2005).
Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).
Liu, Q., Bader, J., Jungclaus, J. H. & Matei, D. More extreme summertime North Atlantic Oscillation under climate change. Commun. Earth Environ. 6, 474 (2025).
McKenna, C. M. & Maycock, A. C. The role of the North Atlantic Oscillation for Projections of Winter Mean Precipitation in Europe. Geophys. Res. Lett. 49, e2022GL099083 (2022).
Fan, Y., Liu, W., Zhang, P., Chen, R. & Li, L. North Atlantic Oscillation contributes to the subpolar North Atlantic cooling in the past century. Clim. Dyn. 61, 5199–5215 (2023).
Li, K.-Y. & Liu, W. Weakened Atlantic Meridional Overturning Circulation causes the historical North Atlantic Warming Hole. Commun. Earth Environ. 6, 416 (2025).
Smith, D. M. et al. North Atlantic climate far more predictable than models imply. Nature 583, 796–800 (2020).
Stuecker, M. F. et al. Global climate mode resonance due to rapidly intensifying El Niño-Southern Oscillation. Nat. Commun. 16, 9013 (2025).
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model Earth Syst. 12, e2019MS001916 (2020).
Storch, H. V. & Zwiers, F. W. Statistical Analysis in Climate Research. (Cambridge University Press, 1999).
Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B: Stat. Methodol. 39, 1–22 (1977).
Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).
Markov, A. A. An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains. Sci. Context 19, 591–600 (2006).
Markov Chains. in Applied Probability and Queues 51, 3–38 (Springer New York, 2003).
Satpathy, S. S. Anthropogenic Climate Change Leads to a Pronounced Reorganisation of Wintertime North Atlantic Atmospheric Circulation Regimes. Zenodo https://doi.org/10.5281/ZENODO.18030386 (2025).
Acknowledgements
The CESM2-LE simulations were conducted on the IBS/ICCP supercomputer “Aleph,” a 1.43 petaflops high-performance Cray XC50-LC Skylake computing system with 18,720 processor cores, 9.59 PB storage, and 43 PB tape archive space. We also acknowledge the support of KREONET. This study was supported by the Institute for Basic Science (IBS), Republic of Korea, under IBS-R028-D1. C.L.E.F. was also partially supported by the National Research Fund of Korea funded by the Korean government (MSIT) (No. RS-2024-00416848 and NRF-2022M3K3A1097082). Also, V.V. acknowledges funding from the European Union Horizon Project EXPECT (grant 101137656).
Author information
Authors and Affiliations
Contributions
C.L.E.F., S.S.S., and V.V. designed the study. S.S.S. conducted the analysis, produced figures, and wrote the initial draft of the manuscript. C.L.E.F., V.V. and T.O.K. contributed to the discussion and interpretation of results. All authors contributed to the editing and reviewing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks Swinda Falkena and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Chao He and Alice Drinkwater. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Satpathy, S.S., Franzke, C.L.E., Verjans, V. et al. Anthropogenic climate change leads to a pronounced reorganisation of wintertime North Atlantic atmospheric circulation regimes. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03180-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03180-0


