Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Anthropogenic climate change leads to a pronounced reorganisation of wintertime North Atlantic atmospheric circulation regimes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

Anthropogenic climate change leads to a pronounced reorganisation of wintertime North Atlantic atmospheric circulation regimes

  • Susmit Subhransu Satpathy  ORCID: orcid.org/0009-0003-8840-78751,2,
  • Christian L. E. Franzke  ORCID: orcid.org/0000-0003-4111-12281,2,
  • Vincent Verjans  ORCID: orcid.org/0000-0002-3928-95563 &
  • …
  • Terence O’Kane  ORCID: orcid.org/0000-0002-2137-59154 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1305 Accesses

  • 16 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric dynamics
  • Projection and prediction

Abstract

Regional climate variability manifests through distinct atmospheric regimes influencing weather, climate, and predictability. Yet, their response to global warming remains unresolved. Using a hundred realisations from the Community Earth System Model Large Ensemble, we examine shifts in wintertime North Atlantic atmospheric regimes and the North Atlantic Oscillation before and after 1995, highlighting the detectable influence of anthropogenic warming on atmospheric circulation. The large-ensemble framework isolates internal variability by removing the ensemble mean. Under anthropogenic warming, the number of regime states associated with the forced response remains constant, although their spatial circulation patterns undergo substantial reorganisation. In contrast, internal variability alone exhibits a reduction in the number of regime states. Future projections indicate a shift toward more frequent positive phases of the North Atlantic Oscillation, accompanied by low-amplitude negative phases late in the century, alongside a marked decline in its variability and altered mid-tropospheric westerlies.

Similar content being viewed by others

Modulation of Northern Europe near-term anthropogenic warming and wettening assessed through internal variability storylines

Article Open access 06 November 2024

Wide range of possible trajectories of North Atlantic climate in a warming world

Article Open access 17 May 2024

Circulation patterns associated with trends in summer temperature variability patterns in North America

Article Open access 02 August 2023

Data availability

The CESM2-LE model output is available from: (https://www.cesm.ucar.edu/community-projects/lens2/data-sets). The observed Hurrell NAO PC-based index for model validation can be retrieved from: (https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based).

Code availability

The codes used to produce the results in this study are publicly available through the Zenodo repository: (https://doi.org/10.5281/zenodo.18030386)91.

References

  1. Palmer, T. N. A nonlinear dynamical perspective on climate prediction. J. Clim. 12, 575–591 (1999).

    Google Scholar 

  2. Meehl, G. A. et al. Decadal prediction: can it be skillful?. Bull. Am. Meteor. Soc. 90, 1467–1486 (2009).

    Google Scholar 

  3. Franzke, C. L. E. et al. The structure of climate variability across scales. Rev. Geophys. 58, e2019RG000657 (2020).

    Google Scholar 

  4. Deser, C. Certain uncertainty: the role of internal climate variability in projections of regional climate change and risk management. Earth’s. Fut. 8, e2020EF001854 (2020).

    Google Scholar 

  5. Deser, C., Phillips, A. S., Alexander, M. A. & Smoliak, B. V. Projecting North American Climate over the Next 50 Years: uncertainty due to internal variability*. J. Clim. 27, 2271–2296 (2014).

    Google Scholar 

  6. Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Google Scholar 

  7. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Google Scholar 

  8. Osborn, T. J. Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim. Dyn. 22, 605–623 (2004).

    Google Scholar 

  9. Gillett, N. P., Graf, H. F. & Osborn, T. J. Climate change and the North Atlantic Oscillation. in Geophysical Monograph Series (eds Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M.) 134, 193–209 (American Geophysical Union, 2003).

  10. Stenseth, N. C. et al. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc. R. Soc. Lond. B 270, 2087–2096 (2003).

    Google Scholar 

  11. Wang, G. & Schimel, D. Climate change, climate modes, and climate impacts. Annu. Rev. Environ. Resour. 28, 1–28 (2003).

    Google Scholar 

  12. Duteil, O. & Park, W. Future changes in atmospheric synoptic variability slow down ocean circulation and decrease primary productivity in the tropical Pacific Ocean. npj Clim. Atmos. Sci. 6, 136 (2023).

    Google Scholar 

  13. Shrestha, S. & Soden, B. J. Anthropogenic weakening of the atmospheric circulation during the satellite Era. Geophys. Res. Lett. 50, e2023GL104784 (2023).

    Google Scholar 

  14. Rezaei, A., Karami, K., Tilmes, S. & Moore, J. C. Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios. Atmos. Chem. Phys. 23, 5835–5850 (2023).

    Google Scholar 

  15. Lee, J.-Y. et al. Future Change of Northern Hemisphere Summer Tropical–Extratropical Teleconnection in CMIP5 Models*. J. Clim. 27, 3643–3664 (2014).

    Google Scholar 

  16. Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q. & Wang, H. Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27, 9050–9064 (2014).

    Google Scholar 

  17. Gu, Q. et al. Wide range of possible trajectories of North Atlantic climate in a warming world. Nat. Commun. 15, 4221 (2024).

    Google Scholar 

  18. Gervais, M., Shaman, J. & Kushnir, Y. Mechanisms governing the development of the North Atlantic warming hole in the CESM-LE future climate simulations. J. Clim. 31, 5927–5946 (2018).

    Google Scholar 

  19. Gervais, M., Shaman, J. & Kushnir, Y. Impacts of the North Atlantic warming hole in future climate projections: mean atmospheric circulation and the North Atlantic Jet. J. Clim. 32, 2673–2689 (2019).

    Google Scholar 

  20. Deser, C. & Blackmon, M. L. Surface climate variations over the North Atlantic Ocean during Winter: 1900–1989. J. Clim. 6, 1743–1753 (1993).

    Google Scholar 

  21. Marshall, J. et al. North Atlantic climate variability: phenomena, impacts and mechanisms. Int. J. Climatol. 21, 1863–1898 (2001).

    Google Scholar 

  22. Sutton, R. T. & Hodson, D. L. R. Influence of the Ocean on North Atlantic Climate Variability 1871–1999. J. Clim. 16, 3296–3313 (2003).

    Google Scholar 

  23. Hurrell, J. W. et al. Atlantic climate variability and predictability: a CLIVAR perspective. J. Clim. 19, 5100–5121 (2006).

    Google Scholar 

  24. Kim, W. M., Yeager, S., Chang, P. & Danabasoglu, G. Low-frequency North Atlantic climate variability in the community earth system model large ensemble. J. Clim. 31, 787–813 (2018).

    Google Scholar 

  25. Michelangeli, P.-A., Vautard, R. & Legras, B. Weather regimes: recurrence and quasi stationarity. J. Atmos. Sci. 52, 1237–1256 (1995).

    Google Scholar 

  26. Kimoto, M. & Ghil, M. Multiple flow regimes in the Northern Hemisphere winter. part i: methodology and hemispheric regimes. J. Atmos. Sci. 50, 2625–2644 (1993).

    Google Scholar 

  27. Mo, K. & Ghil, M. Cluster analysis of multiple planetary flow regimes. J. Geophys. Res. 93, 10927–10952 (1988).

    Google Scholar 

  28. Smyth, P., Ide, K. & Ghil, M. Multiple regimes in northern hemisphere height fields via mixturemodel clustering*. J. Atmos. Sci. 56, 3704–3723 (1999).

    Google Scholar 

  29. Cassou, C., Terray, L., Hurrell, J. W. & Deser, C. North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J. Clim. 17, 1055–1068 (2004).

    Google Scholar 

  30. Chidean, M. I., Muñoz-Bulnes, J., Ramiro-Bargueño, J., Caamaño, A. J. & Salcedo-Sanz, S. Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering. Glob. Planet. Change 129, 45–55 (2015).

    Google Scholar 

  31. Chidean, M. I., Caamaño, A. J., Casanova-Mateo, C., Ramiro-Bargueño, J. & Salcedo-Sanz, S. Spatio-temporal climate regionalization using a self-organized clustering approach. Theor. Appl. Climatol. 140, 927–949 (2020).

    Google Scholar 

  32. Straus, D. M. Clustering techniques in climate analysis. in Oxford Research Encyclopedia of Climate Science (Oxford University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.711.

  33. Palmer, T. N. A nonlinear dynamical perspective on climate change. Weather 48, 314–326 (1993).

    Google Scholar 

  34. Corti, S., Molteni, F. & Palmer, T. N. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).

    Google Scholar 

  35. Stephenson, D. B., Hannachi, A. & O’Neill, A. On the existence of multiple climate regimes. Quart. J. R. Meteor. Soc. 130, 583–605 (2004).

    Google Scholar 

  36. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dynam. 12, 1393–1411 (2021).

    Google Scholar 

  37. Maher, N. et al. The Max Planck Institute grand ensemble: enabling the exploration of climate system variability. J. Adv. Model Earth Syst. 11, 2050–2069 (2019).

    Google Scholar 

  38. Delworth, T. L. et al. SPEAR: the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model Earth Syst. 12, e2019MS001895 (2020).

    Google Scholar 

  39. Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic Sea ice extent. J. Clim. 30, 553–571 (2017).

    Google Scholar 

  40. Hannachi, A., Straus, D. M., Franzke, C. L. E., Corti, S. & Woollings, T. Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Rev. Geophys. 55, 199–234 (2017).

    Google Scholar 

  41. Visbeck, M. H., Hurrell, J. W., Polvani, L. & Cullen, H. M. The North Atlantic Oscillation: past, present, and future. Proc. Natl. Acad. Sci. USA 98, 12876–12877 (2001).

    Google Scholar 

  42. Hurrell, J. W. & Deser, C. North Atlantic climate variability: the role of the North Atlantic Oscillation. J. Mar. Syst. 78, 28–41 (2009).

    Google Scholar 

  43. Franzke, C., Lee, S. & Feldstein, S. B. Is the North Atlantic Oscillation a Breaking Wave?. J. Atmos. Sci. 61, 145–160 (2004).

    Google Scholar 

  44. Quinn, C., Harries, D. & O’Kane, T. J. Dynamical analysis of a reduced model for the North Atlantic Oscillation. J. Atmos. Sci. https://doi.org/10.1175/JAS-D-20-0282.1 (2021).

  45. Outten, S. & Davy, R. Changes in the North Atlantic Oscillation over the 20th century. Weather Clim. Dynam. 5, 753–762 (2024).

    Google Scholar 

  46. Santolaria-Otín, M. & García-Serrano, J. Internal variability of the winter North Atlantic Oscillation longitudinal displacements. npj Clim. Atmos. Sci. 7, 291 (2024).

    Google Scholar 

  47. Omrani, N.-E. et al. Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. npj Clim. Atmos. Sci. 5, 59 (2022).

  48. Bellucci, A., Gualdi, S., Scoccimarro, E. & Navarra, A. NAO–ocean circulation interactions in a coupled general circulation model. Clim. Dyn. 31, 759–777 (2008).

    Google Scholar 

  49. Okonkwo, C. An advanced review of the relationships between Sahel precipitation and climate indices: a wavelet approach. Int. J. Atmos. Sci. 2014, 1–11 (2014).

    Google Scholar 

  50. Delworth, T. L. & Zeng, F. The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Clim. 29, 941–962 (2016).

    Google Scholar 

  51. Intergovernmental Panel On Climate Change (Ipcc). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2023). https://doi.org/10.1017/9781009157896.

  52. Lehner, F., Deser, C. & Terray, L. Toward a new estimate of “time of emergence” of anthropogenic warming: insights from dynamical adjustment and a large initial-condition model ensemble. J. Clim. 30, 7739–7756 (2017).

    Google Scholar 

  53. Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Chang. 10, 277–286 (2020).

    Google Scholar 

  54. Rousi, E., Selten, F., Rahmstorf, S. & Coumou, D. Changes in North Atlantic Atmospheric circulation in a warmer climate favor winter flooding and summer drought over Europe. J. Clim. 34, 2277–2295 (2021).

    Google Scholar 

  55. Fabiano, F., Meccia, V. L., Davini, P., Ghinassi, P. & Corti, S. A regime view of future atmospheric circulation changes in northern mid-latitudes. Weather Clim. Dynam. 2, 163–180 (2021).

    Google Scholar 

  56. Mitevski, I., Lee, S. H., Vecchi, G., Orbe, C. & Polvani, L. M. More positive and less variable North Atlantic Oscillation at high CO2 forcing. npj Clim. Atmos. Sci. 8, 171 (2025).

  57. Everitt, B. S. & Hand, D. J. Finite Mixture Distributions. https://doi.org/10.1007/978-94-009-5897-5 (Springer Netherlands, Dordrecht, 1981).

  58. Risbey, J. S., O’Kane, T. J., Monselesan, D. P., Franzke, C. & Horenko, I. Metastability of Northern Hemisphere teleconnection modes. J. Atmos. Sci. 72, 35–54 (2015).

    Google Scholar 

  59. Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 6, 461–464 (1978).

  60. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Google Scholar 

  61. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  62. Straus, D. M., Corti, S. & Molteni, F. Circulation regimes: chaotic variability versus SST-forced predictability. J. Clim. 20, 2251–2272 (2007).

    Google Scholar 

  63. Cassou, C. & Terray, L. Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett. 28, 3195–3198 (2001).

    Google Scholar 

  64. Shaw, T. A. Mechanisms of future predicted changes in the Zonal mean mid-latitude circulation. Curr. Clim. Change Rep. 5, 345–357 (2019).

    Google Scholar 

  65. Yu, H. et al. Seasonal phase change of the North Atlantic Tripole Sea surface temperature predicted by air-sea coupling. npj Clim. Atmos. Sci. 7, 322 (2024).

    Google Scholar 

  66. Tao, L. et al. Role of North Atlantic Tripole SST in Mid-Winter Reversal of NAO. Geophys. Res. Lett. 50, e2023GL103502 (2023).

    Google Scholar 

  67. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon. Wea. Rev. 109, 784–812 (1981).

    Google Scholar 

  68. Hurrell, J. W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 269, 676–679 (1995).

    Google Scholar 

  69. Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).

    Google Scholar 

  70. Kim, M., Yoo, C. & Kim, H. Process evaluation of subseasonal North Atlantic Oscillation Prediction in the ECMWF ensemble forecast system. Geophys. Res. Lett. 51, e2024GL111291 (2024).

    Google Scholar 

  71. Schneider, D. P., Deser, C., Fasullo, J. & Trenberth, K. E. Climate Data Guide Spurs Discovery and Understanding. EoS Trans. 94, 121–122 (2013).

    Google Scholar 

  72. Hamouda, M. E., Pasquero, C. & Tziperman, E. Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate. Nat. Clim. Chang. 11, 137–142 (2021).

    Google Scholar 

  73. Manola, I., Haarsma, R. J. & Hazeleger, W. Drivers of North Atlantic Oscillation Events. Tellus A: Dyn. Meteorol. Oceanogr. 65, 19741 (2013).

    Google Scholar 

  74. Hu, H.-M. et al. Tracking westerly wind directions over Europe since the middle Holocene. Nat. Commun. 13, 7866 (2022).

    Google Scholar 

  75. Wu, Y., Ting, M., Seager, R., Huang, H.-P. & Cane, M. A. Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Clim. Dyn. 37, 53–72 (2011).

    Google Scholar 

  76. Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. 117, 2012JD018578 (2012).

    Google Scholar 

  77. Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, 2005GL023684 (2005).

    Google Scholar 

  78. Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).

    Google Scholar 

  79. Liu, Q., Bader, J., Jungclaus, J. H. & Matei, D. More extreme summertime North Atlantic Oscillation under climate change. Commun. Earth Environ. 6, 474 (2025).

    Google Scholar 

  80. McKenna, C. M. & Maycock, A. C. The role of the North Atlantic Oscillation for Projections of Winter Mean Precipitation in Europe. Geophys. Res. Lett. 49, e2022GL099083 (2022).

    Google Scholar 

  81. Fan, Y., Liu, W., Zhang, P., Chen, R. & Li, L. North Atlantic Oscillation contributes to the subpolar North Atlantic cooling in the past century. Clim. Dyn. 61, 5199–5215 (2023).

    Google Scholar 

  82. Li, K.-Y. & Liu, W. Weakened Atlantic Meridional Overturning Circulation causes the historical North Atlantic Warming Hole. Commun. Earth Environ. 6, 416 (2025).

    Google Scholar 

  83. Smith, D. M. et al. North Atlantic climate far more predictable than models imply. Nature 583, 796–800 (2020).

    Google Scholar 

  84. Stuecker, M. F. et al. Global climate mode resonance due to rapidly intensifying El Niño-Southern Oscillation. Nat. Commun. 16, 9013 (2025).

    Google Scholar 

  85. Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model Earth Syst. 12, e2019MS001916 (2020).

    Google Scholar 

  86. Storch, H. V. & Zwiers, F. W. Statistical Analysis in Climate Research. (Cambridge University Press, 1999).

  87. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B: Stat. Methodol. 39, 1–22 (1977).

    Google Scholar 

  88. Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).

    Google Scholar 

  89. Markov, A. A. An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains. Sci. Context 19, 591–600 (2006).

    Google Scholar 

  90. Markov Chains. in Applied Probability and Queues 51, 3–38 (Springer New York, 2003).

  91. Satpathy, S. S. Anthropogenic Climate Change Leads to a Pronounced Reorganisation of Wintertime North Atlantic Atmospheric Circulation Regimes. Zenodo https://doi.org/10.5281/ZENODO.18030386 (2025).

Download references

Acknowledgements

The CESM2-LE simulations were conducted on the IBS/ICCP supercomputer “Aleph,” a 1.43 petaflops high-performance Cray XC50-LC Skylake computing system with 18,720 processor cores, 9.59 PB storage, and 43 PB tape archive space. We also acknowledge the support of KREONET. This study was supported by the Institute for Basic Science (IBS), Republic of Korea, under IBS-R028-D1. C.L.E.F. was also partially supported by the National Research Fund of Korea funded by the Korean government (MSIT) (No. RS-2024-00416848 and NRF-2022M3K3A1097082). Also, V.V. acknowledges funding from the European Union Horizon Project EXPECT (grant 101137656).

Author information

Authors and Affiliations

  1. Center for Climate Physics, Institute for Basic Science (IBS), Busan, Republic of Korea

    Susmit Subhransu Satpathy & Christian L. E. Franzke

  2. Department of Carbon Neutrality and Climate Change, Pusan National University, Busan, Republic of Korea

    Susmit Subhransu Satpathy & Christian L. E. Franzke

  3. Barcelona Supercomputing Center, Barcelona, Spain

    Vincent Verjans

  4. CSIRO Environment, Hobart, TAS, Australia

    Terence O’Kane

Authors
  1. Susmit Subhransu Satpathy
    View author publications

    Search author on:PubMed Google Scholar

  2. Christian L. E. Franzke
    View author publications

    Search author on:PubMed Google Scholar

  3. Vincent Verjans
    View author publications

    Search author on:PubMed Google Scholar

  4. Terence O’Kane
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.L.E.F., S.S.S., and V.V. designed the study. S.S.S. conducted the analysis, produced figures, and wrote the initial draft of the manuscript. C.L.E.F., V.V. and T.O.K. contributed to the discussion and interpretation of results. All authors contributed to the editing and reviewing of the manuscript.

Corresponding authors

Correspondence to Susmit Subhransu Satpathy or Christian L. E. Franzke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Swinda Falkena and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Chao He and Alice Drinkwater. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpathy, S.S., Franzke, C.L.E., Verjans, V. et al. Anthropogenic climate change leads to a pronounced reorganisation of wintertime North Atlantic atmospheric circulation regimes. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03180-0

Download citation

  • Received: 13 August 2025

  • Accepted: 31 December 2025

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03180-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing