Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Randomization, design and analysis for interdependency in aging research: no person or mouse is an island

An Author Correction to this article was published on 24 January 2023

This article has been updated

Abstract

Investigators traditionally use randomized designs and corresponding analysis procedures to make causal inferences about the effects of interventions, assuming independence between an individual’s outcome and treatment assignment and the outcomes of other individuals in the study. Often, such independence may not hold. We provide examples of interdependency in model organism studies and human trials and group effects in aging research and then discuss methodologic issues and solutions. We group methodologic issues as they pertain to (1) single-stage individually randomized trials; (2) cluster-randomized controlled trials; (3) pseudo-cluster-randomized trials; (4) individually randomized group treatment; and (5) two-stage randomized designs. Although we present possible strategies for design and analysis to improve the rigor, accuracy and reproducibility of the science, we also acknowledge real-world constraints. Consequences of nonadherence, differential attrition or missing data, unintended exposure to multiple treatments and other practical realities can be reduced with careful planning, proper study designs and best practices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A visual representation of the study designs.

Similar content being viewed by others

Change history

References

  1. Tchetgen, E. J. T. & VanderWeele, T. J. On causal inference in the presence of interference. Stat. Methods Med. Res. 21, 55–75 (2012).

    Article  Google Scholar 

  2. Razzoli, M. et al. Social stress shortens lifespan in mice. Aging Cell 17, e12778 (2018).

    Article  Google Scholar 

  3. Islam, M. et al. Effect of the resveratrol rice DJ526 on longevity. Nutrients 11, 1804 (2019).

    Article  CAS  Google Scholar 

  4. Manski, C. F. Identification of treatment response with social interactions. Econom. J. 16, S1–S23 (2013).

    Article  Google Scholar 

  5. Hong, G. & Raudenbush, S. W. Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data. J. Am. Stat. Assoc. 101, 901–910 (2006).

    Article  CAS  Google Scholar 

  6. Hudgens, M. G. & Halloran, M. E. Toward causal inference with interference. J. Am. Stat. Assoc. 103, 832–842 (2008).

    Article  CAS  Google Scholar 

  7. Kerr, J. et al. Cluster randomized controlled trial of a multilevel physical activity intervention for older adults. Int. J. Behav. Nutr. Phys. Act. 15, 32 (2018).

    Article  Google Scholar 

  8. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  Google Scholar 

  9. National Institute on Aging. Strategic directions for research, 2020–2025. https://www.nia.nih.gov/ (2020).

  10. Lucanic, M. et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat. Commun. 8, 14256 (2017).

    Article  CAS  Google Scholar 

  11. Bansal, A., Zhu, L. J., Yen, K. & Tissenbaum, H. A. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc. Natl Acad. Sci. USA 112, E277–E286 (2015).

    Article  CAS  Google Scholar 

  12. Ayyadevara, S., Alla, R., Thaden, J. J. & Shmookler Reis, R. J. Remarkable longevity and stress resistance of nematode PI3K‐null mutants. Aging Cell 7, 13–22 (2008).

    Article  CAS  Google Scholar 

  13. Hoffman, J. M., Dudeck, S. K., Patterson, H. K. & Austad, S. N. Sex, mating and repeatability of Drosophila melanogaster longevity. R. Soc. Open Sci. 8, 210273 (2021).

    Article  CAS  Google Scholar 

  14. Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F. & Partridge, L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373, 241–244 (1995).

    Article  CAS  Google Scholar 

  15. Prowse, N. & Partridge, L. The effects of reproduction on longevity and fertility in male Drosophila melanogaster. J. Insect Physiol. 43, 501–512 (1997).

    Article  CAS  Google Scholar 

  16. Yamamoto, R., Palmer, M., Koski, H., Curtis-Joseph, N. & Tatar, M. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 217, iyaa037 (2021).

    Article  Google Scholar 

  17. Paigen, B. et al. Physiological effects of housing density on C57BL/6J mice over a 9-month period. J. Anim. Sci. 90, 5182–5192 (2012).

    Article  CAS  Google Scholar 

  18. Miller, R. A. et al. An Aging Interventions Testing Program: study design and interim report. Aging Cell 6, 565–575 (2007).

    Article  CAS  Google Scholar 

  19. Overton, J. M. & Williams, T. D. Behavioral and physiologic responses to caloric restriction in mice. Physiol. Behav. 81, 749–754 (2004).

    Article  CAS  Google Scholar 

  20. Rikke, B. A. et al. Strain variation in the response of body temperature to dietary restriction. Mechanisms Ageing Dev. 124, 663–678 (2003).

    Article  Google Scholar 

  21. Speakman, J. R. & Keijer, J. Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2, 5–9 (2012).

    Article  Google Scholar 

  22. Ikeno, Y. et al. Housing density does not influence the longevity effect of calorie restriction. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1510–1517 (2005).

    Article  Google Scholar 

  23. Smith, D. L. Jr., Yang, Y., Hu, H. H., Zhai, G. & Nagy, T. R. Measurement of interscapular brown adipose tissue of mice in differentially housed temperatures by chemical-shift-encoded water-fat MRI. J. Magn. Reson. Imaging 38, 1425–1433 (2013).

    Article  Google Scholar 

  24. Koisumi, A. et al. A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mechanisms Ageing Dev. 92, 67–82 (1996).

    Article  Google Scholar 

  25. Lipman, R. D., Gaillard, E. T., Harrison, D. E. & Bronson, R. T. Husbandry factors and the prevalence of age-related amyloidosis in mice. Lab. Anim. Sci. 43, 439–444 (1993).

    CAS  Google Scholar 

  26. Nagy, T. R., Krzywanski, D., Li, J., Meleth, S. & Desmond, R. Effect of group vs. single housing on phenotypic variance in C57BL/6J mice. Obes. Res. 10, 412–415 (2002).

    Article  Google Scholar 

  27. Asch, S. E. In Groups, Leadership and Men: Research in Human Relations (ed. H. Guetzkow) 177–190 (Carnegie Press, 1951).

  28. Pasupathi, M. Age differences in response to conformity pressure for emotional and nonemotional material. Psychol. Aging 14, 170–174 (1999).

    Article  CAS  Google Scholar 

  29. Snyder-Mackler, N. et al. Social determinants of health and survival in humans and other animals. Science 368, eaax9553 (2020).

    Article  CAS  Google Scholar 

  30. Epel, E. S. & Lithgow, G. J. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 69, S10–S16 (2014).

    Article  CAS  Google Scholar 

  31. Egami, N. Identification of causal diffusion effects under structural stationarity. Preprint at https://doi.org/10.48550/arXiv.1810.07858 (2018).

  32. Manski, C. F. Identification of endogenous social effects: the reflection problem. Rev. Econ. Stud. 60, 531–542 (1993).

    Article  Google Scholar 

  33. Lemaitre, M. et al. Effect of influenza vaccination of nursing home staff on mortality of residents: a cluster‐randomized trial. J. Am. Geriatrics Soc. 57, 1580–1586 (2009).

    Article  Google Scholar 

  34. Sandvik, R. K. et al. Impact of a stepwise protocol for treating pain on pain intensity in nursing home patients with dementia: a cluster randomized trial. Eur. J. Pain. 18, 1490–1500 (2014).

    Article  CAS  Google Scholar 

  35. Teerenstra, S., Melis, R. J. F., Peer, P. G. M. & Borm, G. F. Pseudo cluster randomization dealt with selection bias and contamination in clinical trials. J. Clin. Epidemiol. 59, 381–386 (2006).

    Article  CAS  Google Scholar 

  36. Vu, T., Harris, A., Duncan, G. & Sussman, G. Cost-effectiveness of multidisciplinary wound care in nursing homes: a pseudo-randomized pragmatic cluster trial. Fam. Pract. 24, 372–379 (2007).

    Article  Google Scholar 

  37. Beauchamp, M. R. et al. Group-based physical activity for older adults (GOAL) randomized controlled trial: exercise adherence outcomes. Health Psychol. 37, 451–461 (2018).

    Article  Google Scholar 

  38. Haas, M. C. et al. Calorie restriction in overweight seniors: response of older adults to a dieting study: the CROSSROADS randomized controlled clinical trial. J. Nutr. Gerontol. Geriatrics 33, 376–400 (2014).

    Article  Google Scholar 

  39. Tong, G. et al. Impact of complex, partially nested clustering in a three-arm individually randomized group treatment trial: a case study with the wHOPE trial. Clin. Trials 19, 3–13 (2021).

    Article  Google Scholar 

  40. Fine, P., Eames, K. & Heymann, D. L. ‘Herd Immunity’: a rough guide. Clin. Infect. Dis. 52, 911–916 (2011).

    Article  Google Scholar 

  41. Spatola, C. A. et al. The ACTonHEART study: rationale and design of a randomized controlled clinical trial comparing a brief intervention based on Acceptance and Commitment Therapy to usual secondary prevention care of coronary heart disease. Health Qual. Life Outcomes 12, 22 (2014).

    Article  Google Scholar 

  42. Ogburn, E. L. Challenges to estimating contagion effects from observational data. In Complex Spreading Phenomena in Social Systems (eds Lehmann, S. & Ahn, Y.-Y.) 47–64 (Springer, 2017).

  43. Caselli, G. et al. Family clustering in Sardinian longevity: a genealogical approach. Exp. Gerontol. 41, 727–736 (2006).

    Article  CAS  Google Scholar 

  44. Atzmon, G. et al. Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc. Natl Acad. Sci. USA 107, 1710–1717 (2009).

    Article  Google Scholar 

  45. Rasmussen, S. H. et al. Improved cardiovascular profile in Danish centenarians? A comparative study of two birth cohorts born 20 years apart. Eur. Geriatr. Med. 13, 977–986 (2022).

    Article  Google Scholar 

  46. Poulain, M., Chambre, D. & Pes, G. M. Centenarians exposed to the Spanish flu in their early life better survived to COVID-19. Aging 13, 21855–21865 (2021).

    Article  CAS  Google Scholar 

  47. Basse, G., Ding, P., Feller, A. & Toulis, P. Randomization tests for peer effects in group formation experiments. Preprint at https://arxiv.org/abs/1904.02308 (2019).

  48. Pavela, G. et al. Packet randomized experiments for eliminating classes of confounders. Eur. J. Clin. Invest. 45, 45–55 (2015).

    Article  Google Scholar 

  49. Vazquez-Bare, G. Identification and estimation of spillover effects in randomized experiments. J. Econometrics, https://doi.org/10.1016/j.jeconom.2021.10.014 (2022)

  50. Sacerdote, B. Experimental and quasi-experimental analysis of peer effects: two steps forward. Annu. Rev. Econ. 6, 253–272 (2014).

    Article  Google Scholar 

  51. Gadbury, G., Coffey, C. & Allison, D. Modern statistical methods for handling missing repeated measurements in obesity trial data: beyond LOCF. Obes. Rev. 4, 175–184 (2003).

    Article  CAS  Google Scholar 

  52. Escoffery, C. et al. Internet use for health information among college students. J. Am. Coll. Health 53, 183–188 (2005).

    Article  Google Scholar 

  53. Noonan, D. & Simmons, L. A. Navigating nonessential research trials during COVID19: the push we needed for using digital technology to increase access for rural participants? J. Rural Health. 37, 185–187 (2021).

    Article  Google Scholar 

  54. Charness, N. & Boot, W. R. A grand challenge for psychology: reducing the age-related digital divide. Curr. Dir. Psychol. Sci. 31, 187–193 (2022).

    Article  Google Scholar 

  55. Newell, D. J. Intention-to-treat analysis: implications for quantitative and qualitative research. Int. J. Epidemiol. 21, 837–841 (1992).

    Article  CAS  Google Scholar 

  56. Taguchi, A., Wartschow, L. M. & White, M. F. Brain IRS2 signaling coordinates lifespan and nutrient homeostasis. Science 317, 369–372 (2007).

    Article  CAS  Google Scholar 

  57. Kernan, W. N., Viscoli, C. M., Makuch, R. W., Brass, L. M. & Horwitz, R. I. Stratified randomization for clinical trials. J. Clin. Epidemiol. 52, 19–26 (1999).

    Article  CAS  Google Scholar 

  58. Lachin, J. M. Biostatistical Methods: the Assessment of Relative Risks. Vol. 509 (John Wiley & Sons, 2009).

  59. Koch, G. G., Amara, I. A., Davis, G. W. & Gillings, D. B. A review of some statistical methods for covariance analysis of categorical data. Biometrics 38, 563–595 (1982).

  60. Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. & Drazen, J. M. Statistics in medicine–reporting of subgroup analyses in clinical trials. N. Engl. J. Med. 357, 2189–2194 (2007).

    Article  CAS  Google Scholar 

  61. Downie, L. E. et al. Appraising the quality of systematic reviews for age-related macular degeneration interventions: a systematic review. JAMA Ophthalmol. 136, 1051–1061 (2018).

    Article  Google Scholar 

  62. Kalache, A. et al. Nutrition interventions for healthy ageing across the lifespan: a conference report. Eur. J. Nutr. 58, 1–11 (2019).

    Article  CAS  Google Scholar 

  63. Montgomery, J. M., Nyhan, B. & Torres, M. How conditioning on posttreatment variables can ruin your experiment and what to do about it. Am. J. Political Sci. 62, 760–775 (2018).

    Article  Google Scholar 

  64. Robins, J. A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. J. Chronic Dis. 40, 139S–161S (1987).

    Article  Google Scholar 

  65. Almirall, D., Ten Have, T. & Murphy, S. A. Structural nested mean models for assessing time‐varying effect moderation. Biometrics 66, 131–139 (2010).

    Article  Google Scholar 

  66. Westreich, D. et al. The parametric g‐formula to estimate the effect of highly active antiretroviral therapy on incident AIDS or death. Stat. Med. 31, 2000–2009 (2012).

    Article  Google Scholar 

  67. List, E. O. et al. The effects of weight cycling on lifespan in male C57BL/6J mice. Int. J. Obes. 37, 1088–1094 (2013).

    Article  CAS  Google Scholar 

  68. Murray, D. M. Design and Analysis of Group-Randomized Trials. Vol. 29 (Oxford University Press, 1998).

  69. National Institutes of Health. Parallel Group- or Cluster-Randomized Trials (GRTs). https://researchmethodsresources.nih.gov/methods/grt (accessed 14 April 2021).

  70. Campbell, M. K., Piaggio, G., Elbourne, D. R. & Altman, D. G. Consort 2010 statement: extension to cluster randomised trials. BMJ 345, e5661 (2012).

    Article  Google Scholar 

  71. Brown, A. W. et al. Best (but oft-forgotten) practices: designing, analyzing, and reporting cluster randomized controlled trials. Am. J. Clin. Nutr. 102, 241–248 (2015).

    Article  CAS  Google Scholar 

  72. Kimura, M. et al. Community-based intervention to improve dietary habits and promote physical activity among older adults: a cluster randomized trial. BMC Geriatr. 13, 8 (2013).

    Article  Google Scholar 

  73. Bolzern, J., Mnyama, N., Bosanquet, K. & Torgerson, D. J. A review of cluster randomized trials found statistical evidence of selection bias. J. Clin. Epidemiol. 99, 106–112 (2018).

    Article  Google Scholar 

  74. Campbell, M. K., Grimshaw, J. M. & Elbourne, D. R. Intracluster correlation coefficients in cluster randomized trials: empirical insights into how should they be reported. BMC Med. Res. Methodol. 4, 9 (2004).

  75. Li, F., Tian, Z., Bobb, J. & Papadogeorgou, G. Clarifying selection bias in cluster randomized trials: estimands and estimation. Clin. Trials 19, 33–41 (2022).

    Article  Google Scholar 

  76. Eldridge, S. M., Ashby, D. & Kerry, S. Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. Int. J. Epidemiol. 35, 1292–1300 (2006).

    Article  Google Scholar 

  77. Kahan, B. C., Li, F., Copas, A. J. & Harhay, M. O. Estimands in cluster-randomized trials: choosing analyses that answer the right question. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyac131 (2022).

  78. Hitchings, M. D. T., Lipsitch, M., Wang, R. & Bellan, S. E. Competing effects of indirect protection and clustering on the power of cluster-randomized controlled vaccine trials. Am. J. Epidemiol. 187, 1763–1771 (2018).

    Article  Google Scholar 

  79. Hemming, K., Taljaard, M., Moerbeek, M. & Forbes, A. Contamination: how much can an individually randomized trial tolerate. Stat. Med. 40, 3329–3351 (2021).

    Article  Google Scholar 

  80. Jamshidi-Naeini, Y. et al. A practical decision tree to support editorial adjudication of submitted parallel cluster randomized controlled trials. Obesity 30, 565–570 (2022).

    Article  Google Scholar 

  81. Borm, G. F., Melis, R. J. F., Teerenstra, S. & Peer, P. G. Pseudo cluster randomization: a treatment allocation method to minimize contamination and selection bias. Stat. Med. 24, 3535–3547 (2005).

    Article  Google Scholar 

  82. Melis, R. J. F., Teerenstra, S., Olde Rikkert, M. G. M. & Borm, G. F. Pseudo cluster randomization: balancing the disadvantages of cluster and individual randomization. Eval. Health Prof. 34, 151–163 (2010).

    Article  Google Scholar 

  83. Pence, B. W. et al. Balancing contamination and referral bias in a randomized clinical trial: an application of pseudo-cluster randomization. Am. J. Epidemiol. 182, 1039–1046 (2015).

    Google Scholar 

  84. National Institutes of Health. Individually Randomized Group-Treatment (IRGT) Trials. https://researchmethodsresources.nih.gov/methods/irgt (accessed 1 July 2022).

  85. Candlish, J. et al. Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study. BMC Med. Res. Method. 18, 105 (2018).

    Article  Google Scholar 

  86. Ravussin, E. et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of healthspan and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1097–1104 (2015).

    Article  CAS  Google Scholar 

  87. Andridge, R. R., Shoben, A. B., Muller, K. E. & Murray, D. M. Analytic methods for individually randomized group treatment trials and group-randomized trials when subjects belong to multiple groups. Stat. Med. 33, 2178–2190 (2014).

    Article  Google Scholar 

  88. Halloran, M. E. & Hudgens, M. G. Dependent happenings: a recent methodological review. Curr. Epidemiol. Rep. 3, 297–305 (2016).

    Article  Google Scholar 

  89. Philipson, T. External treatment effects and program implementation bias. NBER working paper no. T0250 https://www.nber.org/papers/t0250 (2000).

  90. Ali, M. et al. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: a reanalysis. Lancet 366, 44–49 (2005).

    Article  Google Scholar 

  91. Basse, G. & Feller, A. Analyzing two-stage experiments in the presence of interference. J. Am. Stat. Assoc. 113, 41–55 (2018).

    Article  CAS  Google Scholar 

  92. George, B. J. et al. Randomization to randomization probability: estimating treatment effects under actual conditions of use. Psychol. Methods 23, 337–350 (2018).

    Article  Google Scholar 

  93. Chow, S. -C. & Liu, J. -p. Design and Analysis of Clinical Trials: Concepts and Methodologies. Vol. 507 (John Wiley & Sons, 2008).

  94. Klar, N. & Donner, A. Design effects. Wiley StatsRef: Statistics Reference Online (2014).

  95. Plewis, I. & Hurry, J. A multilevel perspective on the design and analysis of intervention studies. Educational Res. Eval. 4, 13–26 (1998).

    Article  Google Scholar 

  96. Bloom, H. S. Randomizing groups to evaluate place-based programs. In Learning More from Social Experiments: Evolving Analytic Approaches (ed. Bloom, H. S.) 115–172 (Russell Sage Foundation, 2005).

  97. Shadish, W. R., Cook, T. D. & Campbell, D. T. Experimental and Quasi-experimental Designs for Generalized Causal Inference (Houghton Mifflin, 2002).

  98. Rhoads, C. H. The implications of ‘contamination’ for experimental design in education. J. Educ. Behav. Stat. 36, 76–104 (2011).

    Article  Google Scholar 

  99. National Institutes of Health. Research Methods Resources: Group- or Cluster-Randomized Trials (GRTs). https://researchmethodsresources.nih.gov/methods/grt (accessed 1 July 2022).

  100. Rubin, D. B. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat. Med. 26, 20–36 (2007).

    Article  Google Scholar 

  101. Cox, D. R. Planning of Experiments (Wiley, 1958).

  102. Neyman, J. & Iwaszkiewicz, K. Statistical problems in agricultural experimentation. Suppl. J. R. Stat. Soc. 2, 107–180 (1935).

    Article  Google Scholar 

  103. Rubin, D. B. Randomization analysis of experimental data: the Fisher randomization test comment. J. Am. Stat. Assoc. 75, 591–593 (1980).

    Google Scholar 

  104. Cohen, M. S. et al. Effect of bamlanivimab vs placebo on incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities: a randomized clinical trial. JAMA 326, 46–55 (2021).

    Article  CAS  Google Scholar 

  105. Allee, W. C. Co-operation among animals. Am. J. Sociol. 37, 386–398 (1931).

    Article  Google Scholar 

  106. Balthazart, J. et al. Molecular and Cellular Basis of Social Behavior in Vertebrates. Vol. 3 (Springer Science & Business Media, 2012).

  107. Ludewig, A. H. et al. Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genet. 13, e1006717 (2017).

    Article  Google Scholar 

  108. Carey, I. M. et al. Increased risk of acute cardiovascular events after partner bereavement: a matched cohort study. JAMA Intern. Med. 174, 598–605 (2014).

    Article  Google Scholar 

  109. Racine, E., Troyer, J. L., Warren-Findlow, J. & McAuley, W. J. The effect of medical nutrition therapy on changes in dietary knowledge and DASH diet adherence in older adults with cardiovascular disease. J. Nutr. Health Aging 15, 868–876 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Baidwan for contributions to an early version of the paper. This work was supported in part by the National Institute on Aging (grants P30 AG050886; U24 AG056053, K01 AG072615), the Gordon and Betty Moore Foundation and the National Institute of Diabetes and Digestive and Kidney Diseases (grant P30 DK056336).

Author information

Authors and Affiliations

Authors

Contributions

D.B.A. conceived the original idea. D.E.C. managed and coordinated contributions from all co-authors. All co-authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to David B. Allison.

Ethics declarations

Competing interests

P.X. is currently an employee and shareholder of Atara Biotherapeutics at submission. D.B.A. holds equity in one company (Big Sky) and he and his institutions (Indiana University and the Indiana University Foundation) have received grants, contracts, in-kind donations and consulting fees from numerous governmental agencies, non-profit organizations and for-profit organizations including litigators and dietary supplement, food, pharmaceutical, medical device and publishing companies; however, not funded nor are directly relevant to the topic herein. All other authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chusyd, D.E., Austad, S.N., Dickinson, S.L. et al. Randomization, design and analysis for interdependency in aging research: no person or mouse is an island. Nat Aging 2, 1101–1111 (2022). https://doi.org/10.1038/s43587-022-00333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-022-00333-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing