Table 1 Classification performance comparison of the architecture trained from the beginning with large pre-trained models in the test set
Model | AUC | Accuracy | Sensitivity | Specificity | PPV | NPV |
|---|---|---|---|---|---|---|
Prognose-CNNattention | 0.96 ± 0.0012 | 0.8683 ± 0.0071 | 0.8676 ± 0.0009 | 0.9349 ± 0.0012 | 0.8629 ± 0.0011 | 0.9355 ± 0.0022 |
Prognose-CNN (without Attention) | 0.96 ± 0.0021 | 0.8491 ± 0.0082 | 0.8453 ± 0.0010 | 0.9257 ± 0.0001 | 0.8466 ± 0.0023 | 0.9108 ± 0.0034 |
Auto-Prognose-CNNattention | 0.95 ± 0.0015 | 0.8299 ± 0.0113 | 0.8232 ± 0.0009 | 0.9164 ± 0.0002 | 0.8339 ± 0.0001 | 0.9152 ± 0.0043 |
Xception | 0.92 ± 0.0023 | 0.8095 ± 0.0020 | 0.8027 ± 0.0009 | 0.9058 ± 0.0007 | 0.8126 ± 0.0014 | 0.9047 ± 0.0012 |
VGG16 | 0.94 ± 0.0014 | 0.7949 ± 0.0048 | 0.7855 ± 0.0011 | 0.8983 ± 0.0007 | 0.7977 ± 0.0011 | 0.8994 ± 0.0023 |
Inception-V3 | 0.91 ± 0.0012 | 0.7875 ± 0.0092 | 0.7582 ± 0.0002 | 0.8848 ± 0.0009 | 0.7603 ± 0.0031 | 0.8909 ± 0.0026 |
ResNet50 | 0.92 ± 0.0011 | 0.8172 ± 0.0014 | 0.8127 ± 0.0001 | 0.9079 ± 0.0011 | 0.8137 ± 0.0021 | 0.9075 ± 0.0025 |