Table 2 Classification performance metrics of different models trained from the beginning in the test set
Model | Class | AUC | Accuracy | Sensitivity | Specificity | PPV | NPV |
|---|---|---|---|---|---|---|---|
Prognose-CNN (without Attention) | Response | 0.99 ± 0.0012 | 0.8476 ± 0.0082 | 0.9189 ± 0.0071 | 0.9618 ± 0.0012 | 0.9315 ± 0.0001 | 0.9124 ± 0.0022 |
Stable | 0.92 ± 0.0014 | 0.7903 ± 0.0113 | 0.8741 ± 0.0007 | 0.7313 ± 0.0002 | 0.9058 ± 0.0043 | ||
Non-Response | 0.97 ± 0.0015 | 0.8260 ± 0.0009 | 0.9412 ± 0.0010 | 0.8769 ± 0.0034 | 0.9143 ± 0.0007 | ||
Prognose-CNNattention | Response | 0.99 ± 0.0021 | 0.8692 ± 0.0071 | 0.9595 ± 0.0011 | 0.9618 ± 0.0014 | 0.9342 ± 0.0026 | 0.9767 ± 0.0113 |
Stable | 0.93 ± 0.0012 | 0.7749 ± 0.0026 | 0.9090 ± 0.0023 | 0.7869 ± 0.0113 | 0.9028 ± 0.0012 | ||
Non-Response | 0.97 ± 0.0023 | 0.8550 ± 0.0022 | 0.9338 ± 0.0026 | 0.8676 ± 0.0011 | 0.9270 ± 0.0009 | ||
Auto-Prognose-CNNattention (SegforClass) | Response | 0.98 ± 0.0014 | 0.8309 ± 0.0113 | 0.8920 ± 0.0026 | 0.9542 ± 0.0025 | 0.9167 ± 0.0012 | 0.9398 ± 0.0002 |
Stable | 0.89 ± 0.0016 | 0.8065 ± 0.0007 | 0.8392 ± 0.0009 | 0.6849 ± 0.0071 | 0.9091 ± 0.0011 | ||
Non-Response | 0.96 ± 0.0017 | 0.7826 ± 0.0082 | 0.9559 ± 0.0020 | 0.9000 ± 0.0043 | 0.8966 ± 0.0022 |