Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Medicine
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications medicine
  3. articles
  4. article
Selective blockade of latent TGF-β1 activation suppresses tissue fibrosis with good safety
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 28 January 2026

Selective blockade of latent TGF-β1 activation suppresses tissue fibrosis with good safety

  • Masakazu Kanamori1 na1,
  • Izumi Sato  ORCID: orcid.org/0000-0002-1770-02601 na1,
  • Christine Xing’er Koo2 nAff4,
  • Yang Sun2,
  • Hiroki Kawauchi1,
  • Kenji Nakagawa  ORCID: orcid.org/0009-0002-1894-22851,
  • Atsuko Murai3,
  • Kentaro Asanuma3,
  • Siok Wan Gan2,
  • Chai Ling Pang2 nAff5,
  • Yuichiro Shimizu1,
  • Meiri Shida-Kawazoe1,
  • Chisako Kanamaru3,
  • Yoko Kayukawa1,
  • Natsuko Hada1,
  • Ken Ohmine3,
  • Takehisa Kitazawa  ORCID: orcid.org/0000-0002-4958-79361,
  • Junichi Nezu1 nAff6,
  • Tomoyuki Igawa  ORCID: orcid.org/0000-0003-0097-82201 &
  • …
  • Hideaki Shimada  ORCID: orcid.org/0000-0003-4932-13851,2 

Communications Medicine , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Antibody therapy
  • Cancer microenvironment
  • Renal fibrosis

Abstract

Background

Fibrosis is a hallmark of organ failure observed after chronic epithelial injury and inflammation. The transforming growth factor beta (TGF-β) is the master regulator of fibrogenesis, so blockade of the TGF-β pathway is a potential treatment strategy for fibrosis; however, the therapeutic potential of pan-TGF-β blockade is limited by side effects.

Methods

We generated SOF10, a humanized antibody that targets latent TGF-β1 and selectively blocks protease- and integrin αvβ8-mediated latent TGF-β1 activation. We conducted gene expression and histological analyses in nonalcoholic steatohepatitis (NASH)/liver fibrosis and renal interstitial fibrosis models. We also evaluated the combination effect of SOF10 with an immune checkpoint inhibitor in a syngeneic mouse model and performed safety studies in mice and monkeys.

Results

Here we show that SOF10 reduces fibrosis in NASH/liver fibrosis and renal interstitial fibrosis models and improves renal function in a chronic kidney disease model. Furthermore, the combination of SOF10 with an anti-PD-L1 antibody decreases tumor growth in a syngeneic mouse model. SOF10 demonstrates safety in both mice and monkeys.

Conclusions

Selective blockade of latent TGF-β1 activation represents a promising approach for treating a broad range of fibrotic diseases and cancers. By specifically targeting TGF-β1, SOF10 may offer a safer and more effective therapeutic option compared to non-selective TGF-β inhibitors. This strategy has the potential to transform the treatment paradigm for fibrosis-related conditions.

Plain language summary

Fibrosis, the excessive scarring of tissues, contributes to organ failure in many diseases. While increased amounts of a protein called TGF-β can encourage development of fibrosis, complete removal of its activity causes harmful side effects. We developed a protein called SOF10 that selectively blocks only some of the activities of TGF-β1. In our studies, SOF10 reduced scarring in models of liver and kidney disease, improved kidney function, and enhanced cancer treatment when combined with immunotherapy treatments. Importantly, SOF10 proved safe in both mice and monkeys. This selective approach to blocking TGF-β1 activity could be a promising strategy for treating various fibrotic diseases and cancers with fewer side effects than complete TGF-β blockade. Our findings could lead to new treatment options for patients suffering from chronic organ damage and certain cancers.

Data availability

All data associated with this study are presented in the paper or the Supplementary Materials. The sequences of SOF10 have been published in the patent application (WO 2021/039945)74. The structures of SOF10 Fab and latent-TGF-β have been deposited in the RCSB Protein Data Bank under the PDB code 9VJJ. Cif and Pdb file of the structure are provided as Supplementary Data 1 and 2. Source data for Figs. 1, 3, 4, and 5 and Figure S3, S5, S6, and S7 is in Supplementary Data 3.

References

  1. Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor beta in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Google Scholar 

  2. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Google Scholar 

  3. Zhou, D. & Liu, Y. Renal fibrosis in 2015: Understanding the mechanisms of kidney fibrosis. Nat. Rev. Nephrol. 12, 68–70 (2016).

    Google Scholar 

  4. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: A strained relationship. Biochim Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Google Scholar 

  5. Martinez, V. G., Park, D. & Acton, S. E. Immunotherapy: Breaching the barriers for cancer treatment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180214 (2019).

    Google Scholar 

  6. Chung, S. W., Xie, Y. & Suk, J. S. Overcoming physical stromal barriers to cancer immunotherapy. Drug Deliv. Transl. Res 11, 2430–2447 (2021).

    Google Scholar 

  7. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-beta: The master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    Google Scholar 

  8. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Google Scholar 

  9. Lebrun, J. J. The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 381428 (2012).

    Google Scholar 

  10. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Google Scholar 

  11. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFbeta biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Google Scholar 

  12. Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

    Google Scholar 

  13. Sanjabi, S., Oh, S. A. & Li, M. O. Regulation of the immune response by TGF-beta: from conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 9, a022236 (2017).

    Google Scholar 

  14. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    Google Scholar 

  15. Stauber, A. J., Credille, K. M., Truex, L. L., Ehlhardt, W. J. & Young, J. K. Nonclinical safety evaluation of a transforming growth factor β receptor i kinase inhibitor in fischer 344 rats and beagle dogs. J. Clin. Toxicol. 4, 1–10 (2014).

  16. Mitra, M. S. et al. A potent pan-TGFbeta neutralizing monoclonal antibody elicits cardiovascular toxicity in mice and cynomolgus monkeys. Toxicol. Sci. 175, 24–34 (2020).

    Google Scholar 

  17. Lacouture, M. E. et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor beta by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol. Immunother. 64, 437–446 (2015).

    Google Scholar 

  18. Robbrecht, D. et al. Safety and efficacy results from the expansion phase of the first-in-human study evaluating TGFβ inhibitor SAR439459 alone and combined with cemiplimab in adults with advanced solid tumors. J. Clin. Oncol. 40, 2524–2524 (2022).

    Google Scholar 

  19. Martin, C. J. et al. Selective inhibition of TGFbeta1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med 12, eaay8456 (2020).

    Google Scholar 

  20. Yu, L., Border, W. A., Huang, Y. & Noble, N. A. TGF-beta isoforms in renal fibrogenesis. Kidney Int 64, 844–856 (2003).

    Google Scholar 

  21. Rowlinson, S. et al. An anti-TGF-β1 specific mAb demonstrates renal efficacy equivalent to a pan neutralizing mAb in the rat anti-Thy1.1 and mouse db/db models. J. Am. Soc. Nephrol. 18, SA–PO329 (2007).

    Google Scholar 

  22. Gabriely, G. et al. Targeting latency-associated peptide promotes antitumor immunity. Sci. Immunol. 2, eaaj1738 (2017).

    Google Scholar 

  23. Jackson, J. W. et al. An antibody that inhibits TGF-beta1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci. Signal 17, eadn6052 (2024).

    Google Scholar 

  24. Kulkarni, A. B. et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774 (1993).

    Google Scholar 

  25. Yang, Z. et al. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J. Cell Biol. 176, 787–793 (2007).

    Google Scholar 

  26. Shouse, A. N., LaPorte, K. M. & Malek, T. R. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 57, 414–428 (2024).

    Google Scholar 

  27. David, C. J. & Massague, J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419–435 (2018).

    Google Scholar 

  28. Ahamed, J. et al. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-beta1. Blood 112, 3650–3660 (2008).

    Google Scholar 

  29. Okuno, M. et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology 120, 1784–1800 (2001).

    Google Scholar 

  30. Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-beta 1. Mol. Endocrinol. 10, 1077–1083 (1996).

    Google Scholar 

  31. Jenkins, G. The role of proteases in transforming growth factor-beta activation. Int J. Biochem Cell Biol. 40, 1068–1078 (2008).

    Google Scholar 

  32. Shi, M. et al. Latent TGF-beta structure and activation. Nature 474, 343–349 (2011).

    Google Scholar 

  33. Wang, R. et al. GARP regulates the bioavailability and activation of TGFb. eta. Mol. Biol. Cell 23, 1129–1139 (2012).

    Google Scholar 

  34. Brown, N. F. & Marshall, J. F. Integrin-mediated TGFbeta activation modulates the tumour microenvironment. Cancers (Basel) 11, 1221 (2019).

    Google Scholar 

  35. Dong, X., Hudson, N. E., Lu, C. & Springer, T. A. Structural determinants of integrin beta-subunit specificity for latent TGF-beta. Nat. Struct. Mol. Biol. 21, 1091–1096 (2014).

    Google Scholar 

  36. Asano, Y., Ihn, H., Jinnin, M., Mimura, Y. & Tamaki, K. Involvement of alphavbeta5 integrin in the establishment of autocrine TGF-beta signaling in dermal fibroblasts derived from localized scleroderma. J. Invest Dermatol 126, 1761–1769 (2006).

    Google Scholar 

  37. Asano, Y. et al. Increased expression of integrin αvβ3 contributes to the establishment of autocrine TGF-β signaling in scleroderma fibroblasts1. J. Immunol. 175, 7708–7718 (2005).

    Google Scholar 

  38. Liu, S. et al. Expression of integrin beta1 by fibroblasts is required for tissue repair in vivo. J. Cell Sci. 123, 3674–3682 (2010).

    Google Scholar 

  39. Aluwihare, P. et al. Mice that lack activity of alphavbeta6- and alphavbeta8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J. Cell Sci. 122, 227–232 (2009).

    Google Scholar 

  40. Huang, X. Z. et al. Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).

    Google Scholar 

  41. Koth, L. L. et al. Integrin beta6 mediates phospholipid and collectin homeostasis by activation of latent TGF-beta1. Am. J. Respir. Cell Mol. Biol. 37, 651–659 (2007).

    Google Scholar 

  42. Morris, D. G. et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 422, 169–173 (2003).

    Google Scholar 

  43. Raghu, G. et al. A phase IIb randomized clinical study of an anti-αvβ6 monoclonal antibody in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 206, 1128–1139 (2022).

    Google Scholar 

  44. Maeda, A. et al. Identification of human IgG1 variant with enhanced FcRn binding and without increased binding to rheumatoid factor autoantibody. MAbs 9, 844–853 (2017).

    Google Scholar 

  45. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D. Biol. Crystallogr 67, 293–302 (2011).

    Google Scholar 

  46. Kabsch, W. Xds. Acta Crystallogr D. Biol. Crystallogr 66, 125–132 (2010).

    Google Scholar 

  47. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr D. Biol. Crystallogr 69, 1204–1214 (2013).

    Google Scholar 

  48. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D. Biol. Crystallogr 67, 235–242 (2011).

    Google Scholar 

  49. Tickle, I. J. et al. Staraniso. Global Phasing Ltd. (2016).

  50. McCoy, A. J. et al. Phaser crystallographic software. J. Appl Crystallogr 40, 658–674 (2007).

    Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).

    Google Scholar 

  52. Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).

    Google Scholar 

  53. Bricogne, G. B. E. et al. Buster version 2.11.7. Global Phasing Ltd. (2017).

  54. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Google Scholar 

  55. Iida, M. et al. TNF-alpha induces Claudin-1 expression in renal tubules in Alport mice. PLoS One 17, e0265081 (2022).

    Google Scholar 

  56. Ding, H., Xu, Y. & Jiang, N. Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-beta-smad signaling pathway. Mol. Ther. Nucleic Acids 19, 1276–1289 (2020).

    Google Scholar 

  57. Matsumoto, M. et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J. Exp. Pathol. 94, 93–103 (2013).

    Google Scholar 

  58. Pamukcuoglu, M. et al. Peripheral and bone marrow CD34(+) cell levels on chronic myeloproliferative disease. Hematology 22, 74–80 (2017).

    Google Scholar 

  59. Walton, K. L. et al. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-beta1 complex. J. Biol. Chem. 285, 17029–17037 (2010).

    Google Scholar 

  60. Ling, H. et al. Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J. Am. Soc. Nephrol. 14, 377–388 (2003).

    Google Scholar 

  61. Song, X. et al. Recombinant truncated latency-associated peptide alleviates liver fibrosis in vitro and in vivo via inhibition of TGF-beta/Smad pathway. Mol. Med 28, 80 (2022).

    Google Scholar 

  62. Ghafoory, S. et al. Platelet TGF-beta1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv. 2, 470–480 (2018).

    Google Scholar 

  63. Dennler, S. et al. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998).

    Google Scholar 

  64. Martinez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E. & Pedraza-Chaverri, J. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9, 141 (2019).

    Google Scholar 

  65. Cosgrove, D. et al. Collagen COL4A3 knockout: A mouse model for autosomal Alport syndrome. Genes Dev. 10, 2981–2992 (1996).

    Google Scholar 

  66. Grauel, A. L. et al. TGFbeta-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nat. Commun. 11, 6315 (2020).

    Google Scholar 

  67. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med 18, 1028–1040 (2012).

    Google Scholar 

  68. Dong, X. et al. Force interacts with macromolecular structure in activation of TGF-beta. Nature 542, 55–59 (2017).

    Google Scholar 

  69. Campbell, M. G. et al. Cryo-EM reveals integrin-mediated TGF-beta activation without release from latent TGF-beta. Cell 180, 490–501.e416 (2020).

  70. Zhang, X. et al. GARP on hepatic stellate cells is essential for the development of liver fibrosis. J. Hepatol. 79, 1214–1225 (2023).

    Google Scholar 

  71. Dufeys, C., Bodart, J., Bertrand, L., Beauloye, C. & Horman, S. Fibroblasts and platelets: a face-to-face dialogue at the heart of cardiac fibrosis. Am. J. Physiol. Heart Circ. Physiol. 326, H655–H669 (2024).

    Google Scholar 

  72. Dodagatta-Marri, E. et al. Integrin alphavbeta8 on T cells suppresses anti-tumor immunity in multiple models and is a promising target for tumor immunotherapy. Cell Rep. 36, 109309 (2021).

    Google Scholar 

  73. Takasaka, N. et al. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight 3, e122591 (2018).

    Google Scholar 

  74. Kanamori, M. Cross-species anti-latent tgf-beta 1 antibodies and methods of use International Patent Application WO2021/039945 (2021).

Download references

Acknowledgements

We thank A. Sakamoto and T. Tsushima for protein preparation, and Y. Ruike, S. Ishi, and Y. Teranishi for antibody generation or optimization. We also thank D. Kashiwagi, T. Mizuno, S. Yamamoto, K. Ohtake, Y. Tsuboi, S. Usami, S. Matsuo for conducting experiments. We are grateful to T. Kuramochi, Y. Tomii, M. Endo, T. Torizawa, N. Horiba, A. Kato, M. Azuma for advice on the research. We thank all the research assistants at Chugai Pharmaceutical Co. Ltd. and Chugai Pharmabody Research Pte. Ltd. for their excellent experimental assistance.

Author information

Author notes
  1. Christine Xing’er Koo

    Present address: Health Sciences Authority, Singapore, Singapore

  2. Chai Ling Pang

    Present address: AbbVie Operations Singapore Pte. Ltd., Singapore, Singapore

  3. Junichi Nezu

    Present address: Mochida Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan

  4. These authors contributed equally: Masakazu Kanamori, Izumi Sato.

Authors and Affiliations

  1. Research Division, Chugai Pharmaceutical Co. Ltd., Yokohama, Kanagawa, Japan

    Masakazu Kanamori, Izumi Sato, Hiroki Kawauchi, Kenji Nakagawa, Yuichiro Shimizu, Meiri Shida-Kawazoe, Yoko Kayukawa, Natsuko Hada, Takehisa Kitazawa, Junichi Nezu, Tomoyuki Igawa & Hideaki Shimada

  2. Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore

    Christine Xing’er Koo, Yang Sun, Siok Wan Gan, Chai Ling Pang & Hideaki Shimada

  3. Translational Research Division, Chugai Pharmaceutical Co. Ltd., Yokohama, Kanagawa, Japan

    Atsuko Murai, Kentaro Asanuma, Chisako Kanamaru & Ken Ohmine

Authors
  1. Masakazu Kanamori
    View author publications

    Search author on:PubMed Google Scholar

  2. Izumi Sato
    View author publications

    Search author on:PubMed Google Scholar

  3. Christine Xing’er Koo
    View author publications

    Search author on:PubMed Google Scholar

  4. Yang Sun
    View author publications

    Search author on:PubMed Google Scholar

  5. Hiroki Kawauchi
    View author publications

    Search author on:PubMed Google Scholar

  6. Kenji Nakagawa
    View author publications

    Search author on:PubMed Google Scholar

  7. Atsuko Murai
    View author publications

    Search author on:PubMed Google Scholar

  8. Kentaro Asanuma
    View author publications

    Search author on:PubMed Google Scholar

  9. Siok Wan Gan
    View author publications

    Search author on:PubMed Google Scholar

  10. Chai Ling Pang
    View author publications

    Search author on:PubMed Google Scholar

  11. Yuichiro Shimizu
    View author publications

    Search author on:PubMed Google Scholar

  12. Meiri Shida-Kawazoe
    View author publications

    Search author on:PubMed Google Scholar

  13. Chisako Kanamaru
    View author publications

    Search author on:PubMed Google Scholar

  14. Yoko Kayukawa
    View author publications

    Search author on:PubMed Google Scholar

  15. Natsuko Hada
    View author publications

    Search author on:PubMed Google Scholar

  16. Ken Ohmine
    View author publications

    Search author on:PubMed Google Scholar

  17. Takehisa Kitazawa
    View author publications

    Search author on:PubMed Google Scholar

  18. Junichi Nezu
    View author publications

    Search author on:PubMed Google Scholar

  19. Tomoyuki Igawa
    View author publications

    Search author on:PubMed Google Scholar

  20. Hideaki Shimada
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.K., I.S., H.K., K.A., K.O., and H.S. wrote the original draft of the manuscript. M.K., I.S., and H.S. conceptualized and formulated the project. M.K., I.S., H.K., K.N., A.M., Y.K., and N.H. performed experiments. M.K., I.S., C.X.K., Y.S1., H.K., K.N., K.A., S.W.G., C.L.P., Y.S2., M.S.-K., C.K, K.O., coordinated the experiment. T.K., J.N., T.I., and H.S. supervised the work. M.K., I.S., Y.S1., H.K., K.N., A.M., K.A., S.W.G., N.H., K.O., T.K., T.I., and H.S. reviewed and edited the manuscript.

Corresponding author

Correspondence to Hideaki Shimada.

Ethics declarations

Competing interests

M.K., I.S., H.K., K.N, A.M, K.A., Y.S2., M.S.-K., C.K., Y.K., N.H., K.O., T.K., T.I., and H.S. are employees of Chugai Pharmaceutical Co. Ltd. (Chugai). Y.S1., and S.W.G. are employees of Chugai’s subsidiary, Chugai Pharmabody Research Pte. Ltd.(Chugai Pharmabody Research). J.N was employees of Chugai, and C.X.K and C.L.P. were employees of Chugai Pharmabody Research at the time of the study. H.S. was a Chief Executive Officer of Chugai Pharmabody Research Pte. Ltd. M.K., I.S., H.K., K.N., A.M., K.A., Y.S2., M.S.-K., C.K., Y.K., N.H., K.O., J.N., T.K., T.I., and H.S. have stock in Chugai. Chugai has filed patent applications related to the anti-latent TGF-β1 antibodies. M.K. is the inventor of the following patent: CROSS-SPECIES ANTI-LATENT TGF-BETA 1 ANTIBODIES AND METHODS OF USE (WO2019/163927). M.K., H.S., and C.X.K. are the inventors of the following patent: CROSS-SPECIES ANTI-LATENT TGF-BETA 1 ANTIBODIES AND METHODS OF USE (WO2021/039945) and USES OF CROSS-SPECIES ANTI-LATENT TGF-BETA 1 ANTIBODIES (WO2022/180764).

Peer review

Peer review information

Communications Medicine thanks Christian Klein, Ruchi Bansal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Description of Additional Supplementary files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanamori, M., Sato, I., Koo, C.X. et al. Selective blockade of latent TGF-β1 activation suppresses tissue fibrosis with good safety. Commun Med (2026). https://doi.org/10.1038/s43856-026-01408-w

Download citation

  • Received: 02 December 2024

  • Accepted: 20 January 2026

  • Published: 28 January 2026

  • DOI: https://doi.org/10.1038/s43856-026-01408-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Contact
  • Conferences
  • Editorial Values Statement
  • Posters
  • Editorial policies

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Medicine (Commun Med)

ISSN 2730-664X (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer