Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Medicine
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications medicine
  3. articles
  4. article
Host response biomarkers of tuberculosis recurrence and treatment failure
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Host response biomarkers of tuberculosis recurrence and treatment failure

  • Bernadette Bauer  ORCID: orcid.org/0009-0001-9228-58961,
  • Mohamed I. M. Ahmed1,2,
  • Olga Baranov1,2,3,
  • Abhishek Bakuli1,2,
  • Luming Lin1,2,
  • Abisai Kisinda4,
  • Mkunde Chachage1,4,5,
  • Nyanda E. Ntinginya4,
  • Celso Khosa6,
  • Michael Hoelscher  ORCID: orcid.org/0000-0002-7642-18351,2,3,7,
  • Mohammed Rassool8,
  • Salome Charalambous9,10,
  • Jayne S. Sutherland11,
  • Kathrin Held  ORCID: orcid.org/0000-0001-7057-69351,2,3,7 na2,
  • Andrea Rachow1,2,7 na2 &
  • Christof Geldmacher1,2,3 na2
  • On behalf of the TB sequel consortium

Communications Medicine , Article number:  (2026) Cite this article

  • 103 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Transcriptomics
  • Tuberculosis

Abstract

Background

Accurate detection of tuberculosis (TB) treatment failure and recurrence can improve disease control, but current sputum-based monitoring tools pose significant limitations. This study aimed to identify sputum-independent biomarkers for detecting and predicting TB treatment failure and recurrence.

Methods

Within the Pan-African TB Sequel study, we conducted a matched case-control study with 40 participants who had recurrent TB or treatment failure and 37 successfully treated controls matched by sex, age, and HIV status. Cases were classified as (a) non-converters with persistently positive sputum Mycobacterium tuberculosis (MTB) results during treatment, (b) reverters at the end of treatment (EOT), or (c) recurrence after EOT. Peripheral blood was collected at baseline, months 2, 4, 6, 9, and 12, and at suspected recurrence. MTB-specific T-cell activation markers (CD38, CD27, HLA-DR, Ki67) and transcriptomic signatures (Sweeney3, Risk6, MAMS6) were assessed and compared to the reference standard MTB culture and smear results.

Results

Here, we show that both MTB-specific T-cell activation and transcriptomic signatures detected non-conversion and TB recurrence at month 9 or 12 after treatment initiation. CD38 expression demonstrates 100% sensitive (95% CI: 56.6–100%) and 78% specific (95% CI: 56.5–99.4%) for detecting TB recurrence, with an AUC of 0.98 (95% CI: 91–100%). Among transcriptomic signatures, MAMS6, RISK6, and Sweeney3 achieve 75% sensitivity (95% CI: 50–100%) and 87–93% specificity (95% CI: MAMS6 0–100%, RISK6 0–93%, Sweeney3 0–100%), with comparable AUCs (0.78–0.83). Neither marker detected TB reversion at EOT.

Conclusion

These sputum-independent biomarkers effectively identify TB disease, non-conversion and recurrence TB after EOT, whereas their utility in detecting TB reversion during treatment remains limited.

Plain Language Summary

Tuberculosis (TB) is a serious infectious disease that can be fatal if untreated. While most patients recover with treatment, some do not respond well or develop TB again after completing therapy. Monitoring how well patients respond to TB treatment currently relies on tests using sputum samples, which can be slow and may be less reliable during treatment. This study aimed to identify alternative host-based markers in blood that could help detect patients with poor treatment response or TB recurrence. We found that specific blood markers can reliably identify patients with TB and detect poor treatment response during therapy, as well as TB recurrence after treatment completion. These findings may help improve early detection, guide treatment decisions, and reduce TB transmission.

Similar content being viewed by others

Case–control diagnostic accuracy study of a non-sputum CD38-based TAM-TB test from a single milliliter of blood

Article Open access 23 June 2021

The effect of empirical and laboratory-confirmed tuberculosis on treatment outcomes

Article Open access 21 July 2021

Multi-country evaluation of RISK6, a 6-gene blood transcriptomic signature, for tuberculosis diagnosis and treatment monitoring

Article Open access 01 July 2021

Data availability

Source data underlying the main figures, including the TAM-TB cohort and the relevant clinical datasets, are provided as a single Excel workbook in the Supplementary Data (Supplementary Data 1). The workbook contains multiple sheets corresponding to the individual figures. RNA sequencing data will be deposited in the ENA repository (Accession number PRJEB101203).

Code availability

The code for the analysis of the RNA signatures is provided at https://github.com/TropI-LMU/BauerEtAl2025.

References

  1. Global Tuberculosis Report 2024. 1st ed. [cited 1 Mar 2025]. Available from: https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31850656 (World Health Organization, 2024).

  2. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Available from: https://permalink.obvsg.at/ (World Health Organization, 2014).

  3. Vega, V., Rodríguez, S., van der Stuyft, P., Seas, C. & Otero, L. Recurrent TB: a systematic review and meta-analysis of the incidence rates and the proportions of relapses and reinfections. Thorax 76, 494–502 (2021).

    Google Scholar 

  4. van der Werf, M. J., Langendam, M. W., Huitric, E. & Manissero, D. Multidrug resistance after inappropriate tuberculosis treatment: a meta-analysis. Eur. Respir. J. 39, 1511–1519 (2012).

    Google Scholar 

  5. Espinal, M. A. et al. Determinants of drug-resistant tuberculosis: analysis of 11 countries. Int J. Tuberc. Lung Dis. 5, 887–893 (2001).

    Google Scholar 

  6. Romanowski, K. et al. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: an individual patient data meta-analysis. Thorax 74, 291–297 (2019).

    Google Scholar 

  7. Chaves Torres, N. M., Quijano Rodríguez, J. J., Porras Andrade, P. S., Arriaga, M. B. & Netto, E. M. Factors predictive of the success of tuberculosis treatment: a systematic review with meta-analysis. PLoS One 14, e0226507 (2019).

    Google Scholar 

  8. Chang, K. C., Leung, C. C., Yew, W. W., Ho, S. C. & Tam, C. M. A nested case-control study on treatment-related risk factors for early relapse of tuberculosis. Am. J. Respir. Crit. Care Med. 170, 1124–1130 (2004).

    Google Scholar 

  9. Vega, V. et al. Risk factors for pulmonary tuberculosis recurrence, relapse and reinfection: a systematic review and meta-analysis. BMJ Open Respir. Res. 11 (2024).

  10. Imperial, M. Z. et al. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nat. Med. 24, 1708–1715 (2018).

    Google Scholar 

  11. Heyckendorf, J. et al. Tuberculosis treatment monitoring and outcome measures: new interest and new strategies. Clin. Microbiol Rev. 35, e0022721 (2022).

    Google Scholar 

  12. Adekambi, T. et al. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J. Clin. Investig. 125, 1827–1838 (2015).

    Google Scholar 

  13. Portevin, D. et al. Assessment of the novel T-cell activation marker-tuberculosis assay for diagnosis of active tuberculosis in children: a prospective proof-of-concept study. Lancet Infect. Dis. 14, 931–938 (2014).

    Google Scholar 

  14. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016).

    Google Scholar 

  15. Riou, C. et al. Disease extent and anti-tubercular treatment response correlates with Mycobacterium tuberculosis-specific CD4 T-cell phenotype regardless of HIV-1 status. Clin. Transl. Immunol. 9, e1176 (2020).

  16. Penn-Nicholson, A. et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci. Rep. 10, 8629 (2020).

    Google Scholar 

  17. Heyckendorf, J. et al. Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. Eur. Respir. J. 58 (2021).

  18. Sivakumaran, D. et al. Combining host-derived biomarkers with patient characteristics improves signature performance in predicting tuberculosis treatment outcomes. Commun. Biol. 3, 359 (2020).

    Google Scholar 

  19. Ahmed, M. I. M. et al. Phenotypic changes on mycobacterium tuberculosis-specific CD4 T cells as surrogate markers for tuberculosis treatment efficacy. Front. Immunol. 9, 2247 (2018).

    Google Scholar 

  20. Riou, C., Berkowitz, N., Goliath, R., Burgers, W. A. & Wilkinson, R. J. Analysis of the phenotype of mycobacterium tuberculosis-specific CD4+ T cells to discriminate latent from active tuberculosis in HIV-uninfected and HIV-infected individuals. Front. Immunol. 8, 968 (2017).

    Google Scholar 

  21. Kroidl, I. et al. Assessment of tuberculosis disease activity in people infected with Mycobacterium tuberculosis and living with HIV: a longitudinal cohort study. EClinicalMedicine 49, 101470 (2022).

    Google Scholar 

  22. Roe, J. et al. Blood transcriptomic stratification of short-term risk in contacts of tuberculosis. Clin. Infect. Dis. 70, 731–737 (2020).

    Google Scholar 

  23. Singhania, A., Wilkinson, R. J., Rodrigue, M., Haldar, P. & O’Garra, A. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat. Immunol. 19, 1159–1168 (2018).

    Google Scholar 

  24. Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir. Med 4, 213–224 (2016).

    Google Scholar 

  25. Kaforou, M. et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med 10, e1001538 (2013).

    Google Scholar 

  26. Verhagen, L. M. et al. A predictive signature gene set for discriminating active from latent tuberculosis in Warao Amerindian children. BMC Genom. 14, 74 (2013).

    Google Scholar 

  27. Berry, M. P. R. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Google Scholar 

  28. Bloom, C. I. et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS One 8, e70630 (2013).

    Google Scholar 

  29. Da Laux Costa, L. et al. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases. Tuberculosis 95, 421–425 (2015).

    Google Scholar 

  30. Darboe, F. et al. Diagnostic performance of an optimized transcriptomic signature of risk of tuberculosis in cryopreserved peripheral blood mononuclear cells. Tuberculosis 108, 124–126 (2018).

    Google Scholar 

  31. Suliman, S. et al. Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. Am. J. Respir. Crit. Care Med. 197, 1198–1208 (2018).

    Google Scholar 

  32. Jenum, S. et al. BLR1 and FCGR1A transcripts in peripheral blood associate with the extent of intrathoracic tuberculosis in children and predict treatment outcome. Sci. Rep. 6, 38841 (2016).

    Google Scholar 

  33. Thompson, E. G. et al. Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis 107, 48–58 (2017).

    Google Scholar 

  34. van Doorn, C. L. R. et al. Transcriptional profiles predict treatment outcome in patients with tuberculosis and diabetes at diagnosis and at two weeks after initiation of anti-tuberculosis treatment. EBioMedicine 82, 104173 (2022).

    Google Scholar 

  35. Cliff, J. M. et al. Excessive cytolytic responses predict tuberculosis relapse after apparently successful treatment. J. Infect. Dis. 213, 485–495 (2016).

    Google Scholar 

  36. Reimann, M. et al. The TB27 transcriptomic model for predicting Mycobacterium tuberculosis culture conversion. Pathog. Immun. 10, 120–139 (2024).

    Google Scholar 

  37. Rachow, A. et al. TB sequel: incidence, pathogenesis and risk factors of long-term medical and social sequelae of pulmonary TB—a study protocol. BMC Pulm. Med. 19, 4 (2019).

    Google Scholar 

  38. Linh NN, et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur. Respir. J. 58, 2100804(2021).

  39. Behr, M. A., Edelstein, P. H. & Ramakrishnan, L. Revisiting the timetable of tuberculosis. BMJ 362, k2738 (2018).

    Google Scholar 

  40. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Google Scholar 

  41. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  42. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinforma. 12, 77 (2011).

    Google Scholar 

  43. R Core Team. R: A Language and Environment for Statistical Computing. R version 4.1.3. Vienna, Austria; 2022. Available from: https://www.R-project.org/.

  44. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Second edition. (Use R!). Available from https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=4546676 (Springer International Publishing, 2016).

  45. Ralph, A. P. et al. A simple, valid, numerical score for grading chest X-ray severity in adult smear-positive pulmonary tuberculosis. Thorax 65, 863–869 (2010).

    Google Scholar 

  46. Malherbe, S. T. et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat. Med. 22, 1094–1100 (2016).

    Google Scholar 

  47. Bryant, J. M. et al. Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir. Med. 1, 786–792 (2013).

    Google Scholar 

  48. Burman, W. J. et al. The incidence of false-positive cultures for Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med. 155, 321–326 (1997).

    Google Scholar 

  49. Ruddy, M. et al. Estimation of the rate of unrecognized cross-contamination with Mycobacterium tuberculosis in London microbiology laboratories. J. Clin. Microbiol. 40, 4100–4104 (2002).

    Google Scholar 

  50. Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, 16076 (2016).

    Google Scholar 

  51. Lindestam Arlehamn, C. S. et al. A quantitative analysis of complexity of human pathogen-specific CD4 T cell responses in healthy M. tuberculosis-infected South Africans. PLoS Pathog. 12, e1005760 (2016).

    Google Scholar 

  52. Warsinske, H. C. et al. Assessment of the validity of a blood-based 3-gene signature score for progression and diagnosis of tuberculosis, disease severity, and treatment response. JAMA Netw. Open 1, e183779 (2018).

    Google Scholar 

  53. Ronacher, K. et al. Distinct serum biosignatures are associated with different tuberculosis treatment outcomes. Tuberculosis 118, 101859 (2019).

    Google Scholar 

  54. Olbrich, L. et al. Rapid and accurate diagnosis of pediatric tuberculosis disease (RaPaed-TB): a diagnostic accuracy study for pediatric tuberculosis. Pediatr. Infect. Dis. J. 42, 353–360 (2023).

Download references

Acknowledgements

The authors would like to thank all colleagues and partners involved in the TB Sequel project for their dedication and invaluable contributions. Special thanks are extended to all study participants in South Africa, Gambia, Mozambique, and Tanzania, whose involvement made this project possible. The TB Sequel project is funded by the German Ministry for Education and Research (BMBF, 01KA1613) and is part of the Research Networks for Health Innovations in Sub-Saharan Africa. The experimental and data analytical work presented here was supported by the German Ministry for Education and Research through funding from the Deutsches Zentrum für Infektionsforschung (DZIF, TTU-TB personalized medicine TTU 02_813). The funders did not influence the study design, data collection, analysis, or interpretation; the writing of the manuscript; or the decision to submit the paper for publication. All authors confirm they had complete access to the study data and take full responsibility for the decision to submit the manuscript for publication.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Kathrin Held, Andrea Rachow, Christof Geldmacher.

Authors and Affiliations

  1. Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany

    Bernadette Bauer, Mohamed I. M. Ahmed, Olga Baranov, Abhishek Bakuli, Luming Lin, Mkunde Chachage, Michael Hoelscher, Kathrin Held, Andrea Rachow, Christof Geldmacher, Olena Ivanova, Anna-Maria Mekota, Elmar Saathoff, Friedrich Riess & Fidelina Zekoll

  2. German Center for Infection Research, Partner site Munich, Munich, Germany

    Mohamed I. M. Ahmed, Olga Baranov, Abhishek Bakuli, Luming Lin, Michael Hoelscher, Kathrin Held, Andrea Rachow & Christof Geldmacher

  3. Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany

    Olga Baranov, Michael Hoelscher, Kathrin Held & Christof Geldmacher

  4. NIMR-Mbeya Medical Research Center (MMRC), Mbeya, Tanzania

    Abisai Kisinda, Mkunde Chachage, Nyanda E. Ntinginya, Issa Sabi, Tina Minja, Daniel Mapamba, Emmanuel Sichone, Lwitiho Sudi, Elimina Siyame & Julieth M. Lalashowi

  5. University of Dar es Salaam-Mbeya College of Health and Allied Sciences, Mbeya, Tanzania

    Mkunde Chachage

  6. Instituto Nacional de Saúde, Marracuene, Maputo province, Mozambique

    Celso Khosa

  7. Unit Global Health, Helmholtz Zentrum München, German Research Centre for Environmental Health (HMGU), Neuherberg, Germany

    Michael Hoelscher, Kathrin Held & Andrea Rachow

  8. Clinical HIV Research Unit, Helen Joseph Hospital, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa

    Mohammed Rassool

  9. School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

    Salome Charalambous

  10. The Aurum Institute, Johannesburg, South Africa

    Salome Charalambous, Gavin Churchyard, Robert Wallis, Kavindhran Velen, Farzana Sathar & Fadzai Munedzimwe

  11. Vaccines and Immunity Theme, MRC Unit, The Gambia at LSHTM, Fajara, The Gambia

    Jayne S. Sutherland

  12. Medical Research Council (MRC) Unit, The Gambia at LSHTM, Fajara, The Gambia

    Beate Kampmann, Basil Sambou, Abi-Janet Riley, Binta Sarr, Caleb Muefong, Georgetta Daffeh, Olumuyiwa Owolabi,  Ben Dowsing, Azeezat Sallahdeen, Shamanthi Jayasooriya, Abdou Sillah, Monica Davies, Alhaji Jobe, Momodou Jallow, Salieu Barry, Lamin Bah, Simon Badjie, Kairaba Kanyi, Gambia Sowe, Isatou Loum, Awa Touray, Mustapha Bah, Rohey Jallow & Simon Donkor

  13. WITS (University of Witwatersrand), Johannesburg, South Africa

    Ian Sanne, Lyndel Singh, Jaclyn Bennet Denise Evans, Kamban Hirasen & Nelly Jinga

  14. Instituto Nacional de Saúde (INS), Ministry of Health, Maputo, Mozambique

    Ilesh Jani, Nilesh Bhatt, Sofia Viegas, Carla Madeira, Khalide Azam, Cláudio Abujate, Narciso Macie, Nádia Sitoe, Salomão Manjate, Vânia Maphossa, Alberto Machaze, Cristovão Matusse, Antonio Machiana, Candido Azize, Arlindo Machava, Celina Nhamuave & Elvira Monteiro

  15. Research Center Borstel, Leibniz-Center for Medicine and Biosciences (FZB), Borstel, Germany

    Stefan Niemann, Matthias Merker, Viola Dreyer, Ulrich Schaible & Christoph Leschczyk

  16. Education for Health Africa, Mount Edgecombe, South Africa

    Lindsay Zurba

  17. Karolinska Institute, Stockholm, Sweden

    Knut Lönnroth

Authors
  1. Bernadette Bauer
    View author publications

    Search author on:PubMed Google Scholar

  2. Mohamed I. M. Ahmed
    View author publications

    Search author on:PubMed Google Scholar

  3. Olga Baranov
    View author publications

    Search author on:PubMed Google Scholar

  4. Abhishek Bakuli
    View author publications

    Search author on:PubMed Google Scholar

  5. Luming Lin
    View author publications

    Search author on:PubMed Google Scholar

  6. Abisai Kisinda
    View author publications

    Search author on:PubMed Google Scholar

  7. Mkunde Chachage
    View author publications

    Search author on:PubMed Google Scholar

  8. Nyanda E. Ntinginya
    View author publications

    Search author on:PubMed Google Scholar

  9. Celso Khosa
    View author publications

    Search author on:PubMed Google Scholar

  10. Michael Hoelscher
    View author publications

    Search author on:PubMed Google Scholar

  11. Mohammed Rassool
    View author publications

    Search author on:PubMed Google Scholar

  12. Salome Charalambous
    View author publications

    Search author on:PubMed Google Scholar

  13. Jayne S. Sutherland
    View author publications

    Search author on:PubMed Google Scholar

  14. Kathrin Held
    View author publications

    Search author on:PubMed Google Scholar

  15. Andrea Rachow
    View author publications

    Search author on:PubMed Google Scholar

  16. Christof Geldmacher
    View author publications

    Search author on:PubMed Google Scholar

Consortia

On behalf of the TB sequel consortium

  • Beate Kampmann
  • , Basil Sambou
  • , Abi-Janet Riley
  • , Binta Sarr
  • , Caleb Muefong
  • , Georgetta Daffeh
  • , Olumuyiwa Owolabi
  • ,  Ben Dowsing
  • , Azeezat Sallahdeen
  • , Shamanthi Jayasooriya
  • , Abdou Sillah
  • , Monica Davies
  • , Alhaji Jobe
  • , Momodou Jallow
  • , Salieu Barry
  • , Lamin Bah
  • , Simon Badjie
  • , Kairaba Kanyi
  • , Gambia Sowe
  • , Isatou Loum
  • , Awa Touray
  • , Mustapha Bah
  • , Rohey Jallow
  • , Simon Donkor
  • , Issa Sabi
  • , Tina Minja
  • , Daniel Mapamba
  • , Emmanuel Sichone
  • , Lwitiho Sudi
  • , Elimina Siyame
  • , Julieth M. Lalashowi
  • , Ian Sanne
  • , Lyndel Singh
  • , Jaclyn Bennet Denise Evans
  • , Kamban Hirasen
  • , Nelly Jinga
  • , Ilesh Jani
  • , Nilesh Bhatt
  • , Sofia Viegas
  • , Carla Madeira
  • , Khalide Azam
  • , Cláudio Abujate
  • , Narciso Macie
  • , Nádia Sitoe
  • , Salomão Manjate
  • , Vânia Maphossa
  • , Alberto Machaze
  • , Cristovão Matusse
  • , Antonio Machiana
  • , Candido Azize
  • , Arlindo Machava
  • , Celina Nhamuave
  • , Elvira Monteiro
  • , Olena Ivanova
  • , Anna-Maria Mekota
  • , Elmar Saathoff
  • , Friedrich Riess
  • , Fidelina Zekoll
  • , Gavin Churchyard
  • , Robert Wallis
  • , Kavindhran Velen
  • , Farzana Sathar
  • , Fadzai Munedzimwe
  • , Stefan Niemann
  • , Matthias Merker
  • , Viola Dreyer
  • , Ulrich Schaible
  • , Christoph Leschczyk
  • , Lindsay Zurba
  •  & Knut Lönnroth

Contributions

C.G., A.R., and K.H. were responsible for study development, funding acquisition, supervision of study conduct, and data analysis strategy. The setup and conduct of the clinical study, including data and sample collection, were carried out by M.R., S.C., J.S., A.K., M.C., N.N., and C.K. Laboratory data collection and analysis were performed by B.B., O.B., M.A., and A.B. B.B. and C.G. developed the paper and wrote the first draft. Critical review of the paper was performed by C.G., K.H., J.S. and A.R. All co-authors read, commented on, and approved the final version of the paper.

Corresponding author

Correspondence to Bernadette Bauer.

Ethics declarations

Competing interests

The authors (M.A., O.B., M.H., K.H., C.G.) have submitted a European patent application related to the MAMS_6 transcriptomic signature presented in the manuscript. The application is currently unpublished and pending. Otherwise, the authors have no competing interests.

Peer review

Peer review information

Communications Medicine thanks Simon Mendelsohn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Material

Description of Additional Supplementary files

Supplementary Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, B., Ahmed, M.I.M., Baranov, O. et al. Host response biomarkers of tuberculosis recurrence and treatment failure. Commun Med (2026). https://doi.org/10.1038/s43856-026-01424-w

Download citation

  • Received: 24 May 2025

  • Accepted: 28 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s43856-026-01424-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Contact
  • Conferences
  • Editorial Values Statement
  • Posters
  • Editorial policies

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Medicine (Commun Med)

ISSN 2730-664X (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing